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Abstract. This paper gives some of the history of the conjugate gradient and Lanczos algorithms and an

annotated bibliography for the period 1948-1976.
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1. Introduction. The conjugate gradient and Lanczos algorithms for solving linear
systems of equations and eigenproblems represent very important computational innova-
tions of the early 1950s. These methods came into wide use only in the mid-1970s.
Shortly thereafter, vector computers and massive computer memories made it possible to
use these methods to solve problems which could not be solved in any other way. Since
that time, the algorithms have been further refined and have become a basic tool for solv-
ing a wide variety of problems on a wide variety of computer architectures. The conju-
gate gradient algorithm has also been extended to solve nonlinear systems of equations
and optimization problems, and this has had tremendous impact on the computation of
unconstrained and constrained optimization problems.

The purpose of this paper is to trace some of the history of the conjugate gradient
and Lanczos algorithms during the period from their original development to their
widespread application in the mid-1970s.

It is not the purpose of this paper to give the definitive derivation of the algorithms
and their properties; for such information, the reader is referred to the references in the
bibliography as well as more recent treatments such as Matrix Computations by G. H.
Golub and C. F. Van Loan (The Johns Hopkins University Press, Baltimore, Maryland,
1983, Chapters 9 and 10). It is necessary, however, to establish notation to make the
differences among the variants of the algorithm more clear. This is our first task.

The conjugate gradient algorithm can be thought of as a method for minimizing a
function 1/2(x, Ax)- (x, b) where A is an nn matrix (or an operator on a Hilbert space)
and x and b are vectors in the domain ad range spaces, respectively. The minimizer of
this function satisfies the equation Ax b if A is self-adjoint and positive definite, so the
algorithm provides a means for solving linear equations. It is characterized by the pro-
perty of stepping at each iteration in the direction of the component of the gradient A-
conjugate to the preceding step direction, and by the property of finite termination under
exact arithmetic. The residual at step k can be expressed as the product of an optimal
polynomial in A with the initial residual, and thus the distribution of eigenvalues is
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exploited; indeed, the method will converge in k or fewer iterations if the operator has k
distinct eigenvalues. For simplicity, we will take the initial guess x0 0, giving an initial
residual, or negative gradient, of r0 b, and we take this as our first step direction P0 as
well. The algorithm is

rk +1 rk ok APk,

(r,, rk) (rk + 1, rk + 1)
Ctk (p,, ap,) Sk

(r, r,)

Variants of the algorithm arise from using different choices of the inner product, from
computing the residual directly from its definition as

r +l b Axk +l,

and from using different, but mathematically equivalent, formulas for the parameters, such
as

(r, p) (r/ +1, Ap)
otk (Pk, Apk) (Pk, Apk)

An important variant can be derived by adding a preconditioning operator M to the for-
mulation, applying the algorithm to the equivalent problem of minimizing
1/2(Ml/2y, AM/2y) (M1/2y, b), and then changing back to the variable x M1/2y. From
one point of view, conjugate gradients is a convergence acceleration method for an under-
lying iteration My, +1= Nyk + b where A M- N, and this has been a very fruitful
insight.

Another equivalent version of the algorithm is formed by, eliminating the vectors p in
the equations above, giving the three-term recurrence relation

x + x_l + o3k +(r p + x x_),

rk + r. + o3 + (-Ark 9 + r rk 1),

o3k +
(rk, rk) Ok - (rk, Ark)

(rk r, 9, O3
9k (rk, rk)

with the definitions x_l x0 and O3o 0.
The idea behind the Lanczos algorithm for determining eigenvalues of a matrix can

be discussed easily using the three-term recurrence relation above. By forming a matrix

R whose columns are the first k residual vectors normalized to length 1, we can derive
the relation

ARk RkTk + rke,
where Tk is a tridiagonal matrix of dimension k whose elements can be computed from
the 19j and O3j values, and e is the kth unit vector. The residual vectors are mutually
orthogonal, so a full n steps of the algorithm yield a similarity transformation of the
matrix A into tridiagonal form if the residual does not become zero prematurely. The
intermediate matrices Tk have interlacing eigenvalues, however, and even for small k,
some eigenvalues of A may be well approximated. Lanczos used the recurrence relations
as a convenient way of constructing characteristic polynomials of the matrices T, from
which approximations to eigenvalues could be computed.
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The algorithm can be extended to minimization of nonquadratic functions f (x). In
this case we define the residual vector r to be the negative gradient of f evaluated at xk,
and the matrix A, the Hessian matrix for f, changes at each iteration. The alternate for-
mulas no longer give equivalent algorithms, and much study has been given to appropri-
ate choices.

Our discussion does not even hint at the richness of the algorithms: acceleration pro-
cedures, convergence properties, and the interplay among the complementary views of the
quadratic algorithm as a minimization procedure, as a linear system solver, and as a simi-
larity transformation. The remainder of the paper, devoted to the history of this family of
algorithms, focuses on discoveries of these ideas and others. In 2, we trace the early
developments at the National Bureau of Standards. Some of the key developments
involved in making the algorithms practical are summarized in 3. Section 4 gives infor-
mation on the organization of the annotated bibliography, 5 is devoted to acknowledg-
ments, and the bibliography and author index follow.

2. Early developments. The original development of this family of algorithms was
carried out by a core of researchers including Cornelius Lanczos and Magnus Hestenes at
the Institute for Numerical Analysis in the National Applied Mathematics Laboratories at
the United States National Bureau of Standards (NBS) in Los Angeles, and Eduard Stiefel
of the Eidg. Technische Hochschule Ziirich. The first communication among the NBS
researchers and Stiefel concerning this algorithm seems to have been at a Symposium on
Simultaneous Linear Equations and the Determination of Eigenvalues, held at INA in
August 1951, as discussed in Stiefel (1952). Further perspective on the interplay between
the researchers at the National Bureau of Standards can be found in Forsythe, Hestenes,
and Rosser (1951), Hestenes and Stiefel (1952), Rosser (1953), and Todd (1975). The
National Bureau of Standards developments can be traced through internal quarterly pro-
ject reports of the National Applied Mathematics Laboratories. The following is a con-
densation of some of the information in those reports. In some cases, work can be attri-
buted to a single person, in others, only to a project directed by a manager or group of
managers.

2.1 April- June, 1949.

Project: Determination of Characteristic Values of Matrices. Manager: C. Lanczos.
Lanczos was investigating eigenvalue algorithms in this and other projects and was

preparing to write up the work.

Project: Approximate Solution of Sets of Arbitrary Simultaneous Algebraic Equations.
Manager: C. Lanczos.

A "method for solving equations was investigated." The method is steepest descent
applied to minimizing the residual. "At present the investigation is directed to the possi-
bility of increasing the convergence of the successive reductions, by replacing A by
A 3t +A with suitably chosen 3."

This was the quarter in which Hestenes was hired (although in his position at the
University of California in Los Angeles since 1947 he had already had contact with the
NBS group), but there seems to be no explicit mention of his activities.

2.2 July, 1949 June, 1951.

Lanczos seems to have been working on the eigenvalue algorithm and other things,
and the Lanczos (1950) manuscript was submitted and accepted for publication in the
Journal of Research of the National Bureau of Standards in the last quarter of 1949.
Hestenes seems to have been working on the Hestenes-Karush project and variational
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problems, among other things. Both were participating in common seminars and project
meetings. There is no mention of the conjugate gradient algorithm.

2.3 July September, 1951.

Project: Solution of Sets of Simultaneous Algebraic Equations and Techniques for the
Inversion and Iteration of Matrices. Managers: Forsythe, Hestenes, Lanczos, Motzkin,
Rosser, Stein.

"Experimental work with the finite step methods described by M. R. Hestenes in a
paper entitled ’Iterative methods for solving linear equations’ was initiated by G. E. For-
sythe and M. L. Stein." "Dr. E. Stiefel and Dr. M. R. Hestenes are writing a joint paper
on extensions and implications of the methods described in the papers presented by J.
Barkley Rosser, E. Stiefel and M. R. Hestenes at the Symposium on Simultaneous Linear
Equations and the Determination of Eigenvalues held August 23-25, 1951, at the INA
For the extensive work of C. Lanczos on the solution of linear algebraic equations, see
the description of the algorithm which he devised."

Project: Studies in Applied Mathematics. Managers: Lanczos, Rosser, van der Corput.
This describes the nucleus of his "Solution of systems of linear equations by minim-

ized iterations" paper.

Project: Calculation of Eigenvalues, Eigenvectors, and Eigenfunctions of Linear Opera-
tors.

Experiments were conducted on applying Newton’s method to the characteristic poly-
nomial obtained from using conjugate gradients (r-p version) on a symmetric positive
definite matrix.

2.4 October- December, 1951.

Project: Solution of Sets of Simultaneous Algebraic Equations and Techniques for the
Inversion and Iteration of Matrices. Managers: Forsythe, Hestenes, Lanczos, Motzkin,
Rosser, Stein.

"The joint exposition by E. Stiefel and M. R. Hestenes of their ’finite iteration’ pro-
cedure is almost finished."

Lanczos was working on a method to solve Ax b by finding the large eigenvalues
and corresponding eigenvectors of A’ max I -A, where max is the largest eigenvalue of
A. He applied a Chebyshev iteration to eliminate components of the residual correspond-
ing to large eigenvalues of A, and resolved components corresponding to small eigen-
values using the eigeninformation for A’. The method was recommended for problems
with multiple right-hand-sides.

Project: Variational Methods
Hestenes and Stein completed a study of algorithms for minimizing

(Ax-b)*H(Ax-b). Hayes developed convergence theorems applicable to Rayleigh-Ritz
and conjugate gradients for solving linear boundary value problems.

2.5 January- March, 1952.

The Lanczos (1952) manuscript was accepted for publication in the Journal of
Research of the National Bureau of Standards.

2.6 April June, 1952.

Project: Solution of Sets of Simultaneous Algebraic Equations and Techniques for the
Inversion and Iteration of Matrices Managers: Forsythe, Hestenes, Lanczos, Lehmer,
Motzkin.
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The Hestenes and Stiefel (1952) manuscript was completed and accepted for publica-
tion. "It gives a full description of a wide class of methods of ’conjugate directions,’
which includes as special cases both Gaussian elimination and the Hestenes-Lanczos-
Stiefel method of ’conjugate gradients.’ The latter is a finite iterative scheme which
appears practically and theoretically to be a most attractive machine method."

"To test the stability of the conjugate gradient method in regard to rounding-off
errors, symmetric systems of linear equations in 12 unknowns were solved on the IBM
equipment. In order to know the eigenvalues, an orthogonal matrix was constructed, so
that for any given set of eigenvalues a symmetric matrix could be found. The experi-
ments were carried out on three machines [sic] with the following ratios of the largest to
the smallest eigenvalue: 4.9, 100, 5000. The computing machine which was used for
these experiments had a fixed decimal point and was allowed to work with 10 digits. By
shifting, at least seven digits were carried through the computations. For the smallest
ratio an answer with seven correct digits was reached in 11 steps. For the ratio 100 six
correct digits in the 15th step were obtained. In the third case a good answer has not yet
been found since the shifting caused considerable difficulties. The experiments showed
the necessity of using floating operations for this method."

Experiments with the nonsymmetric formulas of matrices of dimension 8 gave con-
vergence in less than or equal to 8 steps, even on singular problems, using the SWAC
with 8 1/2 digits in the arithmetic, obtaining 7-8 correct digits at termination.

Hayes was finishing work on the application of the "method given by E. Stiefel and
M. R. Hestenes" to linear boundary value problems. Lanczos was working on solution of
large-scale linear systems by Chebyshev polynomials.

2.7 July September, 1952.

The conjugate gradient algorithm is often called the "Hestenes and Stiefel" algo-
rithm in the reports of numerical experiments and other activities.

3. Key developments related to the algorithms.

3.1 The early papers. The first presentation of conjugate direction algorithms seems
to be by Fox, Huskey, and Wilkinson (1948) who considered them as direct methods,
and by Forsythe, Hestenes, and Rosser (1951), Hestenes and Stiefel (1952), and Rosser
(1953) who discuss the NBS research. The conjugate gradient algorithm was described in
Hestenes (1951), Lanczos (1952), Hestenes and Stiefel (1952), Stiefel (1952), Stiefel
(1953), Curtiss (1954), Hestenes (1955), Hestenes (1956), and Stiefel (1957). Hestenes,
Lanczos, and Stiefel clearly considered the algorithm to be a full n step direct method for
certain problems, but also suggested its use as an iterative algorithm requiring fewer than
n steps for well-conditioned problems and possibly more than n steps for ill-conditioned
ones. Computational results for the conjugate gradient algorithm were presented in Stiefel
(1953), Fischbach (1956), Stiefel (1958), and Engeli, Ginsburg, Rutishauser and Stiefel
(1959), as well as in Hestenes and Stiefel (1952). Preconditionings, filtering, or change of
inner product were considered in Fischbach (1956), Stiefel (1958), and in Engeli et al.
(1959). Hayes (1954) and Altman (1959) discuss the conjugate gradient algorithm in Hil-
bert space.

Computations using the Lanczos algorithm were given in Lanczos (1950) and Rosser,
Lanczos, Hestenes, and Karush (1951). Complete reorthogonalization was recommended
by Brooker and Sumner (1956), Gregory (1958), and Wilkinson (1958).

3.2 Work in the 1960s. In this period, the conjugate gradient algorithm began to

acquire a mixed reputation. It was still regarded as a standard algorithm, as evidenced by
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its inclusion in the Handbook Series (Ginsberg (1963)), in anthologies such as Beckman
(1960), and in review articles in control (Paiewonsky (1965) and Westcott (1969)), chem-
istry (Wilde (1965)), and pattern recognition (Nagy (1968)).

Frank (1960) tested the algorithm on a matrix with eigenvalues related to the Che-
byshev polynomials, the hardest case for conjugate gradients, and reported slow conver-
gence. Applications in structural analysis by Livesley (1960) were unsuccessful, although
Bothner-By and Naar-Colin (1962) were satisfied with their results in analysis of chemical
spectra, and Feder (1962) recommended the algorithm in lens design. Campbell (1965)
studied ocean circulation and Wilson (1966) solved optimal control problems with the aid
of conjugate gradients. Pitha and Jones (1967) were other users of the algorithm.

Work was also being done on understanding the s-dimensional steepest descent algo-
rithm, which produces the same sequence of iterates as the conjugate gradient algorithm
restarted every s steps. References include Khabaza (1963), Forsythe (1968), and Mar-
chuk and Kuznecov (1968).

Ideas that would eventually lead to successful preconditioned conjugate gradient
algorithms were being developed. Dufour (1964) applied conjugate gradients to problems
in geodesy and discussed several important ideas, including extensions to least squares
problems with equality constraints, preconditioning, and elimination of half of the
unknowns using a Schur complement. Varga (1960) suggested a sparse partial factoriza-
tion of a matrix as a splitting operator for Chebyshev acceleration, and Dupont, Kendall,
and Rachford (1968), Dupont (1968), and Stone (1968) also considered sparse factoriza-
tions. Other ideas related to preconditioning were discussed by Frank (1960) (polynomial
filtering), Wachspress and Habetler (1960) (diagonal scaling), Habetler and Wachspress
(1961) (Chebyshev acceleration of SSOR), Ehrlich (1964) (Chebyshev acceleration of
block SSOR), Gunn (1964) (Chebyshev acceleration of ADI and ADI on a simpler opera-
tor), and Evans (1968) (Chebyshev acceleration of matrix splittings).

Wachspress (1963) used ADI as a preconditioner to conjugate gradients to obtain a
very efficient algorithm.

Antosiewicz and Rheinboldt (1962), Nashed (1965), Daniel (1967), Horwitz and
Sarachik (1968), Hestenes (1969), and Kawamura and Volz (1969) discussed the conju-
gate gradient algorithm in Hilbert space, and Kratochvil (1968) studied the algorithm for a
class of operators on Banach spaces.

A very important advance in the solution of nonlinear equations and optimization
algorithms was made in the development of methods which can solve many such prob-
lems effectively without evaluation of the derivative matrix. The first algorithms in this
class, which reduce to conjugate gradients on quadratic functions, were presented by
Feder (1962), Powell (1962), Fletcher and Powell (1963) building on work of Davidon
(1959), Fletcher and Reeves (1964), Shah, Buehler, and Kempthome (1964), and Broyden
(1965). Polak and Ribiere (1969), Polyak (1969), Zoutendijk (1960), Sinnott and Luen-
berger (1967), Pagurek and Woodside (1968), Luenberger (1969), and Miele, Huang, and
Heideman (1969) solved constrained problems using conjugate gradients.

The theory of Kaniel (1966) greatly increased the understanding of the convergence
properties of the conjugate gradient and Lanczos methods.

Causey and Gregory (1961), Wilkinson (1962), Wilkinson (1965), and Yamamoto
(1968) gave practitioners further insight into causes of failure in the Lanczos algorithm
for nonsymmetric problems. The algorithm was used in applications problems in infrared
spectra (Eu (1968)), scattering theory (Garibotti and Villani (1969)), network analysis
(Marshall (1969)), and nuclear shell analysis (Sebe and Nachamkin (1969)).

3.3 The early 1970s. Although it is clear from the discussion above that the conju-
gate gradient and Lanczos algorithms were widely used in the 1960s, the numerical
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analysis community was not satisfied with the understanding of the algorithms or with
their speed. Preconditioning techniques were not widely known (although much develop-
ment had been done on splitting techniques), and it was in the early 1970s that key
developments were made in making preconditioned algorithms practical.

The paper of Reid (1971) drew the attention of many researchers to the potential of
the algorithm as a iterative method for sparse linear systems. It was a catalyst for much
of the subsequent work in conjugate gradients.

The dissertation of Paige (1971), with publications as Paige (1972) and (1976),
served the analogous purpose for the Lanczos algorithm by providing, among other things,
the first step to an understanding of the loss of orthogonality of the Lanczos vectors, thus
giving the key to the development of stable algorithms that did not require complete
reorthogonalization. This made the Lanczos algorithm practical for large sparse problems
by reducing storage and computation time. Developments along this line were made by
Takahasi and Natori (1971-72) and Kahan and Parlett (1976).

Preconditioning techniques, although discussed in the 1960s, now became widely
used. Axelsson (1972) suggested preconditioning conjugate gradients by a scaled SSOR
operator. Other preconditionings were discussed by Evans (1973), Bartels and Daniel
(1974), Chandra, Eisenstat, and Schultz (1975), Axelsson (1976), Concus, Golub, and
O’Leary (1976), Douglas and Dupont (1976) and by Meijerink and van der Vorst (partial
factorizations) in work that reached journal publication in 1977.

Paige and Saunders (1975) provided the first stable extension of the conjugate gra-
dient algorithm to indefinite matrices. Concus and Golub (1976) considered a class of
nonsymmetric matrices.

The block Lanczos algorithm was developed in Cullum and Donath (1974) and
Underwood (1975).

Applications of the conjugate gradient algorithm, such as those by De and Davies
(1970), Kamoshida, Kani, Sato, and Okada (1970), Kobayashi (1970), Powers (1973),
Wang and Treitel (1973), Dodson, Isaacs, and Rollett (1976), and Konnert (1976) and of
the Lanczos algorithm, such as those by Chang and Wing (1970), Emilia and Bodvarsson
(1970), Weaver and Yoshida (1971), Whitehead (1972), Harms (1974), Hausman, Bloom,
and Bender (1975), Ibarra, Vallieres, and Feng (1975), Platzman (1975), Cline, Golub,
and Platzman (1976), and Kaplan and Gray (1976), also continued during this period.
The Lanczos algorithm was rediscovered by Haydock, Heine, and Kelley (1972) and
(1975) and applied to determining energy states of electrons.

3.4 Preconditioning. The word "preconditioning" is used by Turing (1948) and by
then seems to be standard terminology for problem transformation in order to make solu-
tion easier. The first application of the word to the idea of improving the convergence of
an iterative method may be by Evans (1968), and Evans (1973) and Axelsson (1974)
apply it to the conjugate gradient algorithm. The idea of preconditioning the conjugate
gradient algorithm is much older than this, as noted above, being perhaps implicit in the
original conjugate gradient papers, somewhat more explicit in Hestenes (1956), and actu-
ally used in Engeli et al. (1959). Wachspress (1963) seems to be the first to use an itera-
tive algorithm for discretized partial differential equations (ADI) as a preconditioner for
the conjugate gradient algorithm.

4. The form of the annotated bibliography. The references are arranged alphabeti-
cally by author within year of publication. Each paper is given one or more
"Classification Codes":

A
C

applications
conjugate direction/gradient algorithms for linear systems
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E eigenproblems
L Lanczos algorithm for eigenproblems
N nonlinear conjugate gradient algorithms
P preconditioning
S matrix splittings

An author index follows the bibliography.
A reader should keep in mind several warnings. Because of publication delays,

alphabetization, and mixing of journal publications with technical reports and disserta-
tions, the bibliography is not completely chronological. The bibliography is not exhaus-
tive; in particular, the references to nonlinear versions of the algorithm represent only a
sample of the work done in this period, and references to literature in languages other
than English are quite incomplete. The annotation for each paper only gives information
relevant to the conjugate gradient and Lanczos algorithms and to preconditioning, and
thus may not provide a complete summary of the work.

Quotations in the annotations are excerpts from the work itself. In works concerning
applications to partial differential equations, the parameter h denotes the stepsize in the
discretization.

5. Acknowledgments. Many people provided encouragement, references, correc-
tions, and additions for this project, and we are very grateful to them. Included in this
list are/ke BjiSrck, Paul Concus, James Daniel, Howard Elman, L. Ehrlich, D. J. Evans,
Roland Freund, S. Hammarling, B. P. II’in, B. Kamgar-Parsi, David Kincaid, David Luen-
berger, Stephen Nash, Chris Paige, Tom Patterson, M. J. D. Powell, Axel Ruhe, Michael
Saunders, Paul Saylor, Horst Simon, G. W. Stewart, John Todd, Henk van der Vorst,
Eugene Wachspress, Olof Widlund, Ralph Willoughby, H. Woiniakowski, and David
Young. The bibliography of Kammerer and Nashed (1972) was also very helpful. The
project reports for the National Applied Mathematics Laboratory were obtained through
the library of the Center for Applied Mathematics of the National Bureau of Standards
(recently renamed the National Institute for Standards and Technology), in Gaithersburg,
Maryland.

Annotated Bibliography

1948

/C/Fox, L., H. D. Huskey, and J. H. Wilkinson (1948) "Notes on the Solution of
Algebraic Linear Simultaneous Equations," Quart. J. of Mech. and Appl. Math. 1,
pp. 149-173.

Presents a "method of orthogonal vectors" as a direct method involving forming an
A-conjugate set by Gram-Schmidt orthogonalization and expanding the solution
vector in this basis.

/P/Turing, A.M. (1948) "Rounding-off Errors in Matrix Processes," Quart. J.
of Mech. and Appl. Math. 1, pp. 287-308.

Introduces a quantitative measure of conditioning. "There is a very large class of
problems which naturally give rise to highly ill-conditioned equations [an example
being a polynomial fit in two dimensions with data in a small region]. In such a
case the equations might be improved by a differencing procedure, but this will not

necessarily be the case with all problems. Preconditioning of equations inthis way
will always require considerable liaison between the experimenter and the computer,
and this will limit its applicability" (p. 299).
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1950

1951

/CEL/Lanczos, C. (1950) "An Iteration Method for the Solution of the Eigen-
value Problem of Linear Differential and Integral Operators," J. Res. Nat. Bur.
Standards 45, pp. 255-282.

Gives a polynomial expansion which can be used to solve the eigenvalue problem
and develops recurrence relations for the polynomials. Notes that the recurrence is
sensitive to round-off, and develops an alternate one, based on the principle of
choosing the combination of previous vectors which makes the norm of the result-
ing vector as small as possible, achieving a three-term recurrence for the polynomi-
als. Derives a bi-orthogonalization algorithm for finding eigenvalues of nonsym-
metric matrices, and derives an algorithm with a single set of vectors for sym-
metric matrices. Uses the vectors to generate a set of polynomials which accumu-
late the characteristic polynomial of the original matrix. Recognizes that fewer than
n steps may be needed to obtain a subset of the eigenvalues. Presents applications
to eigenvalue problems in differential equations and integral operators. "The
present investigation contains the results of years of research in the fields of net-
work analysis, flutter problems, vibration of antennas, solution of systems of linear
equations, encountered by the author in his consulting and research work for the
Boeing Airplane Co., Seattle, Wash. The final conclusions were reached since the
author’s stay with the Institute for Numerical Analysis, of the National Bureau of
Standards." "The literature available to the author showed no evidence that the
methods and results of the present investigation have been found before. However,
A.M. Ostrowski of the University of Basle and the Institute for Numerical Analysis
informed the author that his method parallels the earlier work of some Russian
scientists; the references given by Ostrowski are: A. Krylov, Izv. Akad. Nauk SSSR
7, 491 to 539 (1931); N. Luzin, Izv. Akad. Nauk SSSR 7, 903 to 958 (1931). On
the basis of the reviews of these papers in the Zentralblatt, the author believes’that
the two methods coincide only in the point of departure. The author has not, how-
ever, read these Russian papers."

/EL/Milne, W.E. (1950) "Numerical Determination of Characteristic Numbers,"
J. Res. Nat. Bur. Standards 45, pp. 245-254.

Approximates eigensystem of an ordinary differential equation by using a related
partial differential equation and discretizing using finite differences. Derives a relat-
ed trigonometric expansion whose roots determine the eigenvalues of the finite
difference system. Relates the method to Lanczos (1950).

/EL/Arnoldi, W.E. (1951) "The Principle of Minimized Iterations in the Solu-
tion of the Matrix Eigenvalue Problem," Quarterly of Appl. Math. 9, pp. 17-29.

Derives the nonsymmetric Lanczos algorithm as a Galerkin method with the left
and right vectors bi-orthogonal, reducing the matrix to tridiagonal form and pro-
poses its use as an iterative method for n steps or fewer. Derives a new algorithm
with the left and right vectors equal and orthogonal, reducing the matrix to upper
Hessenberg form. Suggests using several steps of the power method to get a start-

ing vector for either algorithm.
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10.

/C/Forsythe, G. E., M. R. Hestenes, and J. B. Rosser (1951) "Iterative Methods
for Solving Linear Equations," Bull. Amer. Math. Soc. 57, p. 480.

(Abstract for Summer Meeting in Minneapolis, Sept. 4-7, 1951, quoted in its entire-
ty) "Several iterative methods are given for solving the equations Ax =b, where A is
a given matrix and b is a vector. These methods appear to be particularly adapted
to high speed computing machines. They have the property that if there were no
round-off error the solution would be obtained in at most n steps where n is the
rank of A. In the singular case the least square solution is obtained. At each itera-
tion the problem is started anew. Accordingly there is no accumulation of errors.
In the hermitian case the method is based on the following result. If A,B >0 are
hermitian matrices which commute then the system b,Ab,.." ,Anb may be re-
placed by a set of B-orthogonal vectors by the algorithm zo=b, z l=zo-aoAzo,
Zi +1 =bizi-aiAzi+ci-1 Zi-l. (Received July 23, 1951)"

/C/Hestenes, Magnus R. (1951) Iterative Methods for Solving Linear Equations,
NAML Report 52-9, July 2, 1951, National Bureau of Standards, Los Angeles, Cal-
ifornia.

(Superceded by Hestenes and Stiefel (1952). Reprinted in J. of Optimization Theory
and Applications 11 (1973), pp. 323-334.) "The methods presented are an out-
growth of discussions with Forsythe, Lanczos, Paige, Rosser, Stein, and others. For
the positive Hermitian case it is convenient to separate the methods into two types.
The first [the three-term recurrence form of conjugate gradients] is a method which
is my interpretation of the suggestions made by Forsythe and Rosser. The second
[the x-r-p version] is one which grew out of my discussion of the problem with
Paige. The two methods are equivalent and yield the same estimates at each
stage." If the first algorithm is used, recommends three-term recurrence for x with
direct calculation of the residual vector. Gives alternate formulas for and I and
relates the parameters in the two methods. Shows finite termination, orthogonality
of the residuals, and a bound on t. Discusses the case A positive semi-definite and
recommends normal equations for nonsymmetric problems. Relates the algorithm
to conjugate direction methods and constructs the formula for the inverse of A.
Derives the property that the kth iterate of the algorithm minimizes a quadratic
function over a k dimensional subspace. Gives a 44 example.

/EL/Hestenes, Magnus R. and William Karush (195 a) "A Method of Gradients
for the Calculation of the Characteristic Roots and Vectors of a Real Symmetric
Matrix," J. Res. Nat. Bur. Standards 47, pp. 45-61.

Uses the iteration xk+l=xk--tp(xk), with p(x)=Ax-t(x)x and t(x) the Rayleigh quo-
tient. Analyzes the method using the Lanczos polynomials and the symmetric tridi-
agonal matrix similar to A.

/EL/Hestenes, Magnus R. and William Karush (1951b) "Solutions of Ax=LBx,"
J. Res. Nat. Bur. Standards 49, pp. 471-478.

Extends the Hestenes-Karush (1950) algorithm to the generalized eigenvalue prob-
lem.

/C/ Hestenes, Magnus R. and Marvin L. Stein (1951) The Solution of Linear
Equations by Minimization, NAML Report 52-45, December 12, 1951, National
Bureau of Standards, Los Angeles, California.
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(Reprinted in J. of Optimization Theory and Applications (1973), pp. 335-359.)
Proposes solving Ax-b by minimizing (b-Ax)*H (b-Ax), where H is Hermitian
positive definite. Studies iterations of the form Xk+l-Xk+(tiPi, and derives condi-
tions on ti and Pi to guarantee convergence. Notes that steepest descent, steepest
descent with non-optimal ti, Gauss-Seidel, SOR, block SOR, n-step methods such
as those "investigated by Lanczos, Hestenes, and Stiefel", and other algorithms are
special cases.

/EL/Karush, W. (1951) "An Iterative Method for Finding Characteristic Vectors
of a Symmetric Matrix," Pacific J. Math. l, pp. 233-248.

Suggests an algorithm equivalent to taking s steps of the Lanczos algorithm, finding
the minimizing eigenvector approximation, and iterating, making reorthogonaliza-
tion less critical than in the Lanczos algorithm. References Lanczos (1950), but
does not really draw the relationship.

/ELP/Rosser, J. B., C. Lanczos, M. R. Hestenes, and W. Karush (1951) "Separa-
tion of Close Eigenvalues of a Real Symmetric Matrix," J. Res. Nat. Bur. Stan-
dards 47, pp. 291-297.

Solves a difficult 88 eigenvalue problem by the Lanczos (1950) algorithm by a
"hand computer" in 100 hours (This method "seems best adapted for use by a
hand computer using a desk computing machine.") and by the Hestenes and
Karush (1951) method (fixed o) on an IBM Card-Programmed Electronic Calcula-
tor. ("Considerable time was spent by Karush in becoming familiar with the
machine, so that it is difficult to say just how long the computation would require
of an experienced operator. Probably 3 or 4 days would be ample.") Suggests po-
lynomial preconditioning to increase the separation of the eigenvalues.

1952

13. /CP/ Hestenes, Magnus R. and Eduard Stiefel (1952) "Methods of Conjugate
Gradients for Solving Linear Systems," J. Res. Nat. Bur. Standards 49, pp. 409-
436.

"The method of conjugate gradients was developed independently by E. Stiefel of
the Institute of Applied Mathematics at Zurich and by M. R. Hestenes with the
cooperation of J. B. Rosser, G. Forsythe, and L. Paige of the Institute for Numerical
Analysis, National Bureau of Standards. The present account was prepared jointly
by M. R. Hestenes and E. Stiefel during the latter’s stay at the National Bureau of
Standards. The first papers on this method were given by E. Stiefel [1952] and M.
R. Hestenes [1951]. Reports on this method were given by E. Stiefel and J. B.
Rosser at a Symposium on August 23-25, 1951. Recently, C. Lanczos [1952]
developed a closely related routine based on his earlier paper on eigenvalue prob-
lem. Examples and numerical tests of the method have been by R. Hayes, U.
Hochstrasser, and M. Stein."

For A symmetric and positive definite: develops conjugate gradients as an iterative
method noting that xn /1 is often considerably better than xn although earlier conver-
gence may occur. Gives the x-r-p version of the algorithm and notes that

11 x-x* II and II x-x* II A are monotonically decreasing although the
residual norm may oscillate. Gives formulas for obtaining characteristic roots from
the recurrences. Proves algebraic and geometric properties of conjugate direction
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and conjugate gradient algorithms and references Fox, Huskey, and Wilkinson
(1948). Gives an algorithm in which the residual norm is monotonic which
modifies the x iterates from conjugate gradients. Gives some round-off analysis and
recommends smoothing the initial residual. Gives an end correction procedure in
case orthogonality is lost. Investigates other normalizations for the direction vec-
tors.

For A symmetric semidefinite: notes that conjugate gradients can obtain a least
squares solution.

For general A: uses A’A-type algorithm.

14.

15.

Also presents the conjugate direction and conjugate gradient algorithms applied to

MAx =Mb and gives the examples M =I and M =A*. Shows that conjugate direc-
tions with unit vectors applied to a symmetric matrix is equivalent to Gauss elimi-
nation. Gives a conjugate direction example in which II x-x* II is monotoni-
cally increasing at intermediate steps. Describes a duality between orthogonal poly-
nomials and n-dimensional geometry. Gives the 3-term recurrence relations for the
residual polynomials. Notes the relation to the Lanczos (1950) algorithm for com-

puting characteristic polynomials and that the conjugate gradient parameters can be
computed by continued fraction expansion of a ratio of polynomials in A. Recom-
mends computational formulas ct=rrp rAp and =-rrAp rAp. Gives numerical
examples and notes that the largest system yet solved involved 90 iterations on 106
difference equations.

/CL/ Lanczos, Cornelius (1952) "Solution of Systems of Linear Equations by
Minimized Iterations," J. Res. Nat. Bur. Standards 49, pp. 33-53.

"The latest publication of Hestenes [1951] and of Stiefel [1952] is closely related
to the p,q algorithm of the present paper, although developed independently and
from different considerations." "The present investigation is based on years of
research concerning the behavior of linear systems, starting with the author’s con-
suiting work for the Physical Research Unit of the Boeing Airplane Company, and
continued under the sponsorship of the National Bureau of Standards." Applies the
Lanczos (1950) algorithm to solving nonsymmetric systems of linear equations by
generating a double set of vectors (equivalently, polynomials) pk=pk(A)b with lead-
ing coefficient so that Pk II is minimal, and q=q(A)b with constant
coefficient so that II q II is minimal. Shows that the p and p* sequences are

biorthogonal and that the q sequences (saving the vectors) can be used to construct
minimal residual solutions for the original system and others involving the same
matrix. Advocates complete reorthogonalization or periodic restart to reduce the ac-
cumulation of error. Recommends scaling symmetric matrices to make diagonal
elements and nonsymmetric matrices to make column norms 1. If A has real non-
negative eigenvalues, recommends a two-phase algorithm, "purifying" the right
hand side by Chebyshev polynomial iteration designed to damp out the components
corresponding to large eigenvalues and then running the minimized iteration algo-
rithm on the remainder. Notes that this can also be used to give smooth approxi-
mate solutions to nearly singular problems by terminating the second phase when a
correction vector becomes too large.

/CLP/Stein, Marvin L. (1952) "Gradient Methods in the Solution of Systems of
Linear Equations," J. Res. Nat. Bur. Standards 48, pp. 407-413.
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Reports on numerical experiments on a preconditioned form of steepest descent (but
preconditioning is not used for acceleration). Also converts linear system to an
eigenvalue problem and applies algorithm of Hestenes and Karush (1951).

/C/ Stiefel, Eduard (1952) "Uber einige Methoden der Relaxationsrechnung,"
Zeitschrift fiir angewandte Mathematik und Physik 3, pp. 1-33.

(A version of this paper was presented at the NBS conference in August, 1951.)
Surveys Jacobi- and Gauss-Seidel-type methods and steepest descent. Defines
"simultaneous relaxation" as adding a linear combination of several vectors to the
current guess. Notes that the parameters are easy to calculate if the directions are
conjugate. Defines a "n-step iteration" (conjugate gradients) and notes that it can
also be used to solve other linear systems with the directions already generated, to
invert matrices, and to solve eigenvalue problems as Lanczos (1950) does. Uses the
5-point operator as a model problem, and provides numerical experiments. "Note
added in proof: After writing up the present work, discovered on a visit to the In-
stitute for Numerical Analysis (University of California) that these results were also
developed somewhat later by a group there. An internal preliminary report for the
National Bureau of Standards was given by M. R. Hestenes in August, 1951
(N.A.M.L. Report 52-9)."

/C/ Stiefel, Eduard (1952-53) "Ausgleichung ohne Aufstellung der Gaussschen
Normalgleichungen," Wissenschaftliche Zeitschrift der Technischen Hochschule
Dresden 2, pp. 441-442.

Proposes a conjugate direction algorithm for solving least squares problems which
uses A rr as the initial direction, and keeps the directions AA T-conjugate. (This al-
gorithm later became known as the LSCG algorithm.)

1953

18.

19.

/P/Forsythe, George E. (1953) "Solving Linear Algebraic Equations Can Be In-
teresting," Bull. Amer. Math. Soc. 59, pp. 299-329.

"With the concept of ’ill-conditioned’ systems Ax=b goes the idea of ’precondi-
tioning’ them. Gauss and Jacobi made early contributions to this subject [referring
to the trick of adding an extra equation to a least squares system] A con-
venient means of preconditioning is to premultiply the system with a matrix B, so
that one has to solve BAx=Bb" (p. 318). Gives two examples: B=A r, giving the
normal equations, and B being the operator generated by Gaussian elimination, so
that BA is upper triangular.

/ELP/Hestenes, Magnus R. (1953) "Determination of Eigenvalues and Eigenvec-
tors of Matrices," in Simultaneous Linear Equations and the Determination of
Eigenvalues, ed. L. J. Paige and Olga Taussky, Applied Mathematics Series 29, Na-
tional Bureau of Standards, U.S. Government Printing Office, Washington, D.C., pp.
89-94.

Surveys methods used at NBS for symmetric eigenvalue computation: power algo-
rithm, steepest descent on the Rayleigh quotient, two forms of a "generalization"
of the Lanczos (1950) algorithm which uses a preconditioning matrix that commutes
with A to obtain the recursion for the characteristic polynomial, and a block
method. Also discusses the generalized eigenvalue problem.
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21.

22.

23.
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/C/Rosser, J. Barkley (1953) "Rapidly Converging Iterative Methods for Solving
Linear Equations," in Simultaneous Linear Equations and the Determination of
Eigenvalues, ed. L. J. Paige and Olga Taussky, Applied Mathematics Series 29, Na-
tional Bureau of Standards, U.S. Government Printing Office, Washington, D.C., pp.
59-64.

Describes the conjugate direction algorithm in its general form, but states that the
identity preconditioner is convenient. "Through the use of colloquia and discussion
groups, nearly all scientific members of the Institute have made some sort of contri-
bution to the problem. Accordingly, it is impossible to assign complete credit for
the results disclosed herein to a single person or a few persons. However, certain
members of the staff have given concentrated attention to the problem over an ex-
tended period and are primarily responsible for the results noted herein. In alpha-
betical order, these are G. E. Forsythe, M. R. Hestenes, C. Lanczos, T. Motzkin, L.
J. Paige, and J. B. Rosser."

/EL/ Rutishauser, H. (1953) "Beitrige zur Kenntnis des Biorthogonalisierungs-
Algorithmus von Lanczos," Zeitschrift fiir angewandte Mathematik und Physik 4,
pp. 35-56.

Proves that there is a starting vector for the Lanczos algorithm which generates m
vectors when the degree of the characteristic polynomial is m. Advocates a method
of making the co-diagonal elements small when the eigenvalues are real, thus im-
proving the convergence of algorithms to find eigenvalues of the bidiagonal matrix.
Gives bounds for the eigenvalues. Relates the algorithm to a system of differential
equations.

/P/Shortley, George (1953) "Use of Tschebyscheff-Polynomial Operators in the
Numerical Solution of Boundary-Value Problems," J. of Appl. Phys. 24, pp. 392-
396.

Uses Chebyshev acceleration of the Jacobi algorithm for solving difference approxi-
mations to elliptic partial differential equations.

/CEL/Stiefel, Eduard (1953) "Some Special Methods of Relaxation Technique,"
in Simultaneous Linear Equations and the Determination of Eigenvalues, ed. L. J.
Paige and Olga Taussky, Applied Mathematics Series 29, National Bureau of Stan-
dards, U.S. Government Printing Office, Washington, D.C., pp. 43-48.

Presents the conjugate gradient algorithm as a minimization procedure and gives
results of numerical experiments on Laplace’s equation on a 33 grid and calcula-
tion of an Airy stress function for the profile of a dam (139 unknowns, 100 hours
of computation on the Zurich Relay Calculator). Notes that the residuals are
orthogonal and may be used to calculate eigenvalues. "The resulting procedure is
similar to that suggested by Lanczos[1950]."

1954

24. /CP/Curtiss, J.H. (1954) "A Generalization of the Method of Conjugate Gra-
dients for Solving Systems of Linear Algebraic Equations," Math. Tables and Aids
to Comp. 8, pp. 189-193.
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25.

26.

27.

28.

1955

29.

30.

Develops conjugate gradient algorithm for solving nonsymmetric systems by apply-
ing it to BATArB. Explains that B =I,T=A -l gives the Hestenes and Stiefel
(1952) algorithm, B =A r,T=(A rA)-1 gives the Hestenes and Stiefel least squares-
type algorithm, and B =I,T=I gives the Craig (1955) algorithm.

/C/Forsythe, A. I. and G. E. Forsythe (1954) "Punched-Card Experiments with
Accelerated Gradient Methods for Linear Equations," in Contributions to the Solu-
tion of Systems of Linear Equations and the Determination of Eigenvalues, ed. Olga
Taussky, Applied Mathematics Series 39, National Bureau of Standards, U.S.
Government Printing Office, Washington, D.C., pp. 55-69.

Runs the Motzkin-Forsythe algorithm (steepest descent with an occasional accelerat-
ing step) on 6x6 examples, concluding that it is twice as fast as consistently under-
relaxing steepest descent and much faster than steepest descent alone. Notes that
the Hestenes and Stiefel (1952) methods seem to supercede these.

/C/Hayes, R.M. (1954) "Iterative Methods of Solving Linear Problems on Hil-
bert Space," in Contributions to the Solution of Systems of Linear Equations and
the Determination of Eigenvalues, ed. Olga Taussky, Applied Mathematics Series
39, National Bureau of Standards, U.S. Government Printing Office, Washington,
D.C., pp. 71-103.

Extends the conjugate direction algorithms to Hilbert space and proves linear con-
vergence for the conjugate gradient algorithm for general operators and superlinear
convergence for operators of the form I+K where K is completely continuous.

/EL/ Stecin, I.M. (1954) "The Computation of Eigenvalues Using Continued
Fractions," Uspekhi matem, nauk 9 No. 2(60), pp. 191-198.

Discusses Lyusternik’s idea for finding the eigenvalues of a symmetric matrix or
operator by transforming a series Co/Z + c l/z 2 + cn/z n (where ck=(Akb, b)) to
a continued fraction whose coefficients are found by Chebyshev’s method of mo-
ments. Discusses one particular algorithm for doing this, and notes that this is
similar to the method of Lanczos orthogonalization.

/SP/Young, David (1954) "On Richardson’s Method for Solving Linear Systems
with Positive Definite Matrices," J. of Math. and Physics 32, pp. 243-255.

Gives convergence results and optimal choice of acceleration parameters for
Richardson’s method. Compares with SOR and gradient methods.

/C/Craig, Edward J.
Physics 34, pp. 64-73.

(1955) "The N-Step Iteration Procedures," J. of Math. and

Discusses a set of conjugate direction methods, including the conjugate gradient al-
gorithm, the algorithm built on A’A-conjugate directions, and the (new) algorithm
built on directions which are A* times a set of orthogonal vectors. Notes that the
last two algorithms can be used on symmetric or nonsymmetric matrices.

/P/ Forsythe, G. E. and E. G. Straus (1955) "On Best Conditioned Matrices,"
Proceedings of the Amer. Math. Soc. 6, pp. 340-345.

Studies the problem of minimizing the 2-norm condition number of T’AT where A
is Hermitian positive definite and T is in a class of regular linear transformations.
As a special case, determines the optimal diagonal preconditioning matrix to be the
one which makes the resulting diagonal elements equal to 1.
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32.

33.

CONJUGATE GRADIENT AND LANCZOS HISTORY 65

/CEP/ Hestenes, Magnus R. (1955) "Iterative Computational Methods," Com-
munications on Pure and Applied Mathematics 8, pp. 85-96.

Gives a description of the conjugate gradient algorithm in general form and notes
that it can be used to solve singular consistent problems. Discusses the eigenvalue
problem, but not Lanczos’ algorithm. "The terminology ’conjugate gradient’ was
suggested by the fact that Pi is the gradient of F, apart from a scale factor, on the
linear manifold conjugate to P0,P 1, ,Pi-l, that is, orthogonal to
[Ap o, ,Api_ ]."

/S/ Sheldon, John W. (1955) "On the Numerical Solution of Elliptic Difference
Equations," Math. Tables and Aids to Comp. 9, pp. 101-112.

Presents the SSOR algorithm

/CL/Stiefel, E. (1955) "Relaxationsmethoden bester Strategie zur LiSsung linear-
er Gleichungssysteme," Comm. math. helv. 29, pp. 157-179.

Surveys a family of algorithms for solving linear systems. Views steepest descent
as Euler’s method on the descent trajectory. Establishes one-to-one correspondence
between the family of algorithms and sequences of polynomials satisfying Ri(0)=I.
Gives the Lanczos polynomials and conjugate gradients as example of such a se-
quence, with polynomials orthogonal with respect to a discrete distribution function.
Studies iterations based on the distribution La(1-,). Gives numerical results for
Poisson equation with constant right-hand side.

1956

34.

35.

36.

/EL/Brooker, R. A. and F. H. Sumner (1956) "The Method of Lanczos for Cal-
culating the Characteristic Roots and Vectors of a Real Symmetric Matrix," Proc.
Inst. Elect. Engrs. B. 103 Suppl., pp. 114-119.

Gives expository treatment of Lanczos algorithm. Recommends Jacobi method for
small problems, Lanczos with reorthogonalization for large ones.

/CEL/Crandall, Stephen H. (1956) Engineering Analysis: A Survey of Numerical
Procedures, McGraw-Hill, New York.

Gives textbook description of conjugate gradient and Lanczos algorithms. "The
usefulness of these methods for actual calculation is still being evaluated
There is, however, no denying the mathematical elegance of the methods."

/ACP/Fischbach, Joseph W. (1956) "Some Applications of Gradient Methods,"
in Proceedings of the Sixth Symposium in Applied Mathematics (1953), McGraw-
Hill, New York, pp. 59-72.

Discusses and experiments with conjugate gradients for computing the inverse of a

matrix, for solving a two-point boundary value problem, and for solving a mildly
nonlinear differential equation after a close approximation to the solution is ob-
tained. "All those who have carried out computations by the method of conjugate
gradients have observed that the (N +l)st step is usually better than the Nth and

represents an improvement which overcomes rounding-off error. Frequently 2N

steps are better than N One possible way of reducing the error growth is to

change the metric (change definition of scalar product) so that the matrix is better
conditioned."
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38.

39.
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/CP/Hestenes, Magnus R. (1956a) "The Conjugate-Gradient Method for Solving
Linear Systems," in Proceedings of the Sixth Symposium in Applied Mathematics
(1953), McGraw-Hill, New York, pp. 83-102.

Derives conjugate direction and conjugate gradient algorithms in general form,
minimizing a function with an arbitrary inner product matrix, and having a precon-
ditioning matrix. Notes that the conjugate gradient parameters can be bounded in
terms of generalized eigenvalues. Discusses the standard conjugate gradient algo-
rithm and the minimum error norm form. Shows that every n-step iterative method
can be reproduced by a conjugate direction method. "From a mathematical point
of view [the original Hestenes and Stiefel algorithm] represents the general case in
the sense that every conjugate gradient algorithm can be reduced to this form by a
change of variable or by a simple change of the original system to be solved."
Notes that no essential changes are required to extend to Hilbert space.

/C/Hestenes, Magnus R. (1956b) "Hilbert Space Methods in Variational Theory
and Numerical Analysis," in Proceedings of the International Congress of
Mathematicians 1954 3, North-Holland, Amsterdam, pp. 229-236.

Studies properties of quadratic forms in Hilbert space. Describes conjugate gra-
dients as a minimization method on the error function, summarizing results of
Hayes (1954).

/CEL/ Lanczos, Cornelius (1956) Applied Analysis, Prentice-Hall, Englewood
Cliffs, New Jersey.

Discusses use of the p,q Lanczos (1950) algorithm for finding eigenvalues and
eigenvectors. Notes that the large eigenvalues are approximated quickly, and the
small eigenvalues could be determined by "preliminary inversion of the matrix."
Suggests use of Chebyshev polynomial transformation of the matrix to determine
eigenvalues in an intermediate range.

1957

40. /C/ Stiefel, E. (1957) "Recent Developments in Relaxation Techniques," in
Proceedings of the International Congress of Mathematicians 1954 1, North-
Holland, Amsterdam, pp. 384-391.

Defines a "relaxation process" as one which reduces a measure of the error at each
step. Notes that for symmetric positive definite matrices, Gauss-Seidel, Gauss elimi-
nation (considered as an iteration), and gradient methods are relaxation processes.
Develops the optimal polynomial property for conjugate gradients.

1958

41.

42.

/AEL/ Gregory, R.T. (1958)
Eigenvalues of Arbitrary Matrices,

"Results Using Lanczos’ Method for Finding
J. Soc. lndustr. Appl. Math 6, pp. 182-188.

Uses Lanczos (1950) algorithm for complex non-Hermitian matrices with double
precision arithmetic, scaling of vectors, and full re-orthogonalization.

/CLP/Lanczos, C. (1958) "Iterative Solution of Large-Scale Linear Systems," J.
Soc. Industr. Appl. Math 6, pp. 91-109.

Discusses the effect of ill-conditioning and right-hand-side measurement errors on
the accuracy of solutions to linear systems with symmetric coefficient matrices.
Analyzes nonsymmetric ones through the symmetric system of size 2n. Estimates
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43.

44.

largest eigenvalue by refinement of power method, and scales the matrix by it.
Then applies iteration based on Chebyshev polynomials and matrix of dimension
n+2.

/CEL/ Stiefel, Eduard L. (1958) "Kernel Polynomials in Linear Algebra and
Their Numerical Applications," in Further Contributions to the Solution of Simul-
taneous Linear Equations and the Determination of Eigenvalues, Applied
Mathematics Series 49, National Bureau of Standards, U.S. Government Printing
Office, Washington, D.C., pp. 1-22.

Derives relaxation algorithms by considering various sets of polynomials with value
at zero. Recommends a two stage process for ill-conditioned systems: filter out

error components corresponding to a large but clustered set of eigenvalues and then
apply conjugate gradients to remove components corresponding to a few small
eigenvalues. As an example, solves Laplace’s equation with constant right-hand side
on a 1010 grid with 11 Chebyshev iterations on [2,8] and 2 conjugate gradient
steps, getting 4 orders of magnitude reduction in the error. Recommends solving
nonlinear systems by the change of variables AA*y=b. Applies kernel polynomials
to the problem of eigenvalue estimation, obtaining the Lanczos (1950) algorithm,
among others. "As it stands, Lanczos’ algorithm can only be successful for low-
order matrices with nicely separated eigenvalues. For larger matrices the rounding-
off errors destroy quickly the orthogonality of the vectors. As in solving linear
equations, it is necessary to find for such matrices a suitable combination of the
methods available." Discusses polynomial transformations to emphasize certain
ranges of the spectrum, and applies the Lanczos algorithm to the transformed ma-
trix. Discusses the generation of orthogonal polynomials by the quotient-difference
algorithm, including the variant corresponding to the Lanczos algorithm.

/AEL/Wilkinson, J.H. (1958) "The Calculation of Eigenvectors by the Method
of Lanczos," Computer J. 1, pp. 148-152.

Uses reorthogonalization on symmetric Lanczos and reorthogonalization plus double
precision on unsymmetric Lanczos. Notes that the latter is a very powerful algo-
rithm.

1959

45.

46.

/C/Altman, Mieczyslaw (1959) "On the Convergence of the Conjugate Gradient
Method for Non-Bounded Linear Operators in Hilbert Space," in Approximation
Methods in Functional Analysis, Lecture Notes, California Institute of Technology,
pp. 33-36.

Proves convergence of conjugate gradients for a self-adjoint, positive definite linear
operator, with domain a dense linear space, satisfying (Au,u)>k(u,u) for some posi-
tive constant k and all u in the domain.

/N/ Davidon, W.C. (1959) Variable Metric Method for Minimization, Report
ANL-5990, Argonne National Laboratory, Argonne, Illinois.

Derives a method (the DFP method, further developed in Fletcher and Powell
(1963)) meant to "improve the speed and accuracy with which the minima of func-
tions can be evaluated numerically" compared to such methods as conjugate gra-
dients, steepest descent, and Newton-Raphson. Proposes guessing the inverse Hes-
sian matrix (symmetric and positive definite), and generating a search direction
equal to this matrix times the negative gradient. Uses either this direction plus an
orthogonal correction, or a line search along this direction, to determine the next



68 GENE H. GOLUB AND DIANNE P. O’LEARY

47.

48.

iterate. Then modifies the inverse Hessian approximation according to the Quasi-
Newton condition using a rank-one or rank-two update. Discusses the initial Hes-
sian approximation and the incorporation of linear constraints. Discusses in an ap-
pendix a simplified rank-one updating procedure.

/ACP/ Engeli, M., Th. Ginsburg, H. Rutishauser, and E. Stiefel (1959) Refined
Iterative Methods for Computation of the Solution and the Eigenvalues of Self-
Adjoint Boundary Value Problems, Birkhauser Verlag, Basel/Stuttgart.

Stiefel: Solves self-adjoint partial differential equations by variational formulation,
not by differential equation itself.

Rutishauser: Surveys gradient methods (Richardson one and two, steepest descent,
Frankel (second order Richardson), Chebychev, hypergeometric relaxation, conju-
gate gradients, conjugate residual). Considers "combined methods," including:

1. conjugate gradients with Chebyshev (attributed to Lanczos (1952)): smooth
the residual with Chebyshev polynomial over range of high eigenvalues, then
apply conjugate gradients. It is noted that the high eigenvalues are "reactivat-
ed" by conjugate gradients, and the method is not recommended.

2. "Replace the system given by another system with the same solution but
with a coefficient matrix A of smaller P-condition number." (P-condition
number condition number in the 2-norm.) Polynomial conditioning is expli-
citly considered and is attributed to Stiefel (1958) in the case of eigencomputa-
tion. The iterations are called "inner" for the polynomial and "outer" for
conjugate gradients, and Chebyshev-conjugate gradients is recommended.

Notes that methods such as those of Richardson and Frankel can also be used for
eigencomputations. Gives the conjugate gradient tridiagonal matrix in non-
symmetric 3-term form. Notes round-off difficulties, and recommends proceeding
more or less than n steps, as long as the residual remains small. Recommends com-
paring the approximations from two tridiagonal matrices (same initial vector, dif-
ferent number of steps, or different initial vector) to determine convergence. Also
discusses determining the eigenvalues of the original matrix from the conjugate
gradient-Chebyshev method.

Ginsburg: Gives results of numerical experiments. For a finite difference problem
with 70 variables, needs approximately 10 conjugate gradient iterations with precon-
ditioning by a 10th-order Chebyshev polynomial. Compares with steepest descent,
conjugate gradient, and other methods on this and other examples.

Engeli: Surveys relaxation methods.

Conclusions: For moderate condition problems, use relaxation. For bad condition-
ing, use conjugate gradients or conjugate gradients-Chebyshev with recursive resi-
duals. Recommends conjugate gradients over conjugate gradients-Chebyshev unless
some low eigenvalues are needed.

/AC/Liiuchli, Peter (1959) "Iterative LiSsung und Fehlerabschiitzung in der Ats-
gleichsrechnung," Zeitschrift fiir angewandte Mathematik und Physik 10, pp. 245-
280.

Develops conjugate gradients and other relaxation methods for overdetermined
linear systems. Notes that finding the point in an n-dimensional subspace of R
(spanned by the columns of C) which is closest to a point is equivalent to solving
C TCx=CTI, but that the problem can also be formulated in terms of a basis B for
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1960

49.

50.

51.

52.

53.

54.

the null space of C r, representing x implicitly as B rx+b=O (for.some vector b) and
avoiding normal equations. Uses Synge’s method of the hypercircle to find upper
and lower bounds on the sum of squared residuals. Notes that the inverse matrix
can be constructed by an update at each conjugate gradient step. Provides numeri-
cal examples.

/C/ Beckman, F.S. (1960) "The Solution of Linear Equations by the Conjugate
Gradient Method," in Mathematical Methods for Digital Computers, ed. Anthony
Ralston and Herbert S. Wilf, Wiley, New York.

Derives conjugate gradients as a conjugate direction method including flow chart,
comments on error analysis, etc.

/CP/ Frank, Werner L. (1960) "Solution of Linear Systems by Richardson’s
Method," J. Assoc. Comput. Mach. 7, pp. 274-286.

Follows Stiefel (1958) in using Chebyshev acceleration on a partial interval; then
applies conjugate gradients. Tests the algorithm on a 50x50 matrix tri(-1,2,-1) with
(1,1) element modified to 1. Needs 20 conjugate gradient iterations (instead of the
theoretical termination in 5) to get 5 digits of accuracy; requires the full 50 if con-
jugate gradients is used alone. Required 46 conjugate gradient iterations to solve 5
point difference equations for n =361.

/P/ Householder, A. S. and F. L. Bauer (1960) "On Certain Iterative Methods for
Solving Linear Systems," Numer. Math. 2, pp. 55-59.

Discusses "methods of projection" which iterate x=x+Yp, where the columns of Y
span a subspace and p is chosen so that the error decreases. Notes that steepest
descent and relaxation techniques both fit into this framework, but does not mention
conjugate gradients.

/AC/Livesley, R. K.
puter J. 3, pp. 34-39.

(1960) "The Analysis of Large Structural Systems," Corn-

Tries to apply conjugate gradients to an ill-conditioned system in structural analysis.
Finds conjugate gradients ineffective because it requires n matrix multiplications
and thus n tape scans, and "rounding errors show a tendency to build up to such an
extent that the solution after N steps is often a worse approximation to the correct
solution than the starting point." "The method was therefore abandoned in favour
of an elimination process."

/EP/Osborne, E.E. (1960)
put. Mach. 7, pp. 338-345.

"On Pre-Conditioning of Matrices," J. Assoc. Corn-

Constructs a.sequence of diagonal similarity transformations to scale an irreducible
matrix to increase the smallest eigenvalue relative to the matrix norm so that the
eigensystem can be more easily determined.

/PS/ Varga, Richard S. (1960) "Factorization and Normalized Iterative
Methods," in Boundary Problems in Differential Equations, ed. Rudolph E. Langer,
University of Wisconsin Press, Madison, pp. 121-142.

"The main purpose of this article is to introduce a class of iterative methods which
depend upon the direct solution of matrix equations involving matrices more general
than tridiagonal matrices." Assumes that A is Stieltjes. Introduces the idea of regu-
lar splitting. Given a regular splitting, accelerates by overrelaxation, Chebyshev
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56.

1961

57.

58.

59.

60.

61.
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semi-iteration, Peaceman-Rachford (1955) algorithm, or Douglas-Rachford (1956)
algorithm. Suggests normalizing factors to have unit diagonal for computational
efficiency. Discusses effectiveness of successive line overrelaxation. Proposes ap-
proximate factorization of A, keeping the factors as sparse as A (the algorithm that
has come to be known as incomplete Cholesky factorization with no extra diago-
nals). Shows that this yields a regular splitting for the 5-point operator.

/PS/ Wachspress, E. L. and G. J. Habetler (1960) "An Alternating-Direction-
Implicit Iteration Technique," J. Soc. Industr. Appl. Math. 8, pp. 403-424.

"Conditions" a matrix by diagonal scaling before applying ADI.

/CN/ Zoutendijk, G. (1960) Methods of Feasible Directions, Elsevier, Amster-
dam.

Uses conjugate directions to construct a finitely terminating quadratic programming
algorithm.

/AEL/Causey, R. L. and R. T. Gregory (1961) "On Lanczos’ Algorithm for Tri-
diagonalizing Matrices," SlAM Rev. 3, pp. 322-328.

Discusses biorthogonal reduction to tridiagonal form. Distinguishes between fatal
and nonfatal instances when the inner product between the left and right vectors
vanish.

/S/D’Yakonov, E.G. (1961) "An Iteration Method for Solving Systems of Finite
Difference Equations," Soviet Math. Dokl. 2, pp. 647-650.

(Dokl. Akad. Nauk SSSR 138, pp. 271-274.) Analyzes the iteration
MXk/l=MXk-O3(Axk-b) where A is a finite difference approximation to an elliptic
operator over the unit square and M represents several iterations of the ADI opera-
tor for the Laplacian. Gives a work estimate of O (n ln2n -/2) ln e to solve the
problem with precision e.

/PS/ Golub, Gene H. and Richard S. Varga (1961) "Chebyshev Semi-Iterative
Methods, Successive Overrelaxation Iterative Methods, and Second Order Richard-
son Iterative Methods, Parts and II," Numer. Math. 3, pp. 147-156, 157-168.

Compares the rates of convergence of the three iterative methods of the title. Pro-
poses applying Chebyshev acceleration to two-cyclic matrices resulting from block
preconditionings, such as those derived from the block SOR splitting of Arms,
Gates, and Zondek SlAM J. 4, 1956, pp. 220-229). Gives applications to partial
difference equations.

/PS/Habetler, G. J. and E. L. Wachspress (1961) "Symmetric Successive Overre-
laxation in Solving Diffusion Difference Equations," Math. of Comp. 15, pp. 356-
362.

Uses Chebyshev acceleration on Sheldon’s SSOR algorithm J. Assoc. Comput.
Mach. 6, 1959, pp. 494-505). Shows SSOR not effective in diffusion calculations
in nuclear reactor theory if the grids are too irregular. Gives algorithm to estimate
parameters.

/C/Martin, D. W. and G. J. Tee (1961) "Iterative Methods for Linear Equations
with Symmetric Positive Definite Matrix," Computer J. 4, pp. 242-254.

Surveys stationary iterative methods, steepest descent, and conjugate gradients in-
cluding previous numerical results. Concludes that "no single method is to be
recommended for universal applications."
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/S/ Oliphant, Thomas A. (1961) "An Implicit, Numerical Method for Solving
Two-Dimensional Time-Dependent Diffusion Problems," Quarterly of Appl. Math.
19, pp. 221-229.

Proposes an iterative method for nine-point finite difference approximations, using a
partial factorization of the difference matrix as a splitting. Applies the algorithm to
linear and nonlinear problems.

/EL/Rollett, J. S. and J. H. Wilkinson (1961) "An Efficient Scheme for the Co-
diagonalization of a Symmetric Matrix by Givens’ Method in a Computer with a
Two-level Store," Computer J. 4, pp. 177-180.

Notes that the resulting bidiagonal matrix for their algorithm is the same as that
from the Lanczos (1950) algorithm.

/EL/ Strachey, C. and J. G. F. Francis (1961) "The Reduction of a Matrix to

Codiagonal Form by Eliminations," Computer J. 4, pp. 168-176.

Notes that the Lanczos (1950) method is equivalent to an elimination method for
reduction of a Hessenberg matrix to tridiagonal form.

/C/ Antosiewicz, Henry A. and Werner C. Rheinboldt (1962) "Numerical
Analysis and Functional Analysis," in Survey of Numerical Analysis, ed. John
Todd, McGraw-Hill, New York, pp. 485-517 (Ch. 14).

Presents conjugate directions for linear self-adjoint positive definite operators on
Hilbert space and proves a convergence rate.

/AC/ Bothner-By, Aksel A. and C. Naar-Colin (1962) "The Proton Magnetic
Resonance Spectra of 2,3-Disubstituted n-Butanes," J. of the ACS 84, pp. 743-747.

Analyzes chemical spectra by solving a least squares problem with conjugate gra-
dients.

/ACN/ Feder, Donald P. (1962) "Automatic Lens Design with a High-Speed
Computer," J. of the Optical Soc. of Amer. 52, pp. 177-183.

Suggests conjugate gradients or DFP methods, among others, to minimize a merit
function in lens design.

/S/Oliphant, Thomas A. (1962) "An Extrapolation Procedure for Solving Linear
Systems," Quarterly of Appl. Math. 20, pp. 257-265.

Generalizes the method of Oliphant (1961) to five-point operators, and allows par-
tial factorizations of a modified difference matrix.

/C/Petryshyn, W.V. (1962) "Direct and Iterative Methods for the Solution of
Linear Operator Equations in Hilbert Space," Trans. AMS 105, pp. 136-175..

Derives minimum error method and, from it, other algorithms. Does not use the
extra matrices for preconditioning.

/N/Powell, M. J.D. (1962) "An Iterative Method for Finding Stationary Values
of a Function of Several Variables," Computer J. 5, pp. 147-151.

Proposes a method which, given a starting point x0, finds a minimizer in one direc-
tion, x l, then minimizes in the n-1 dimensional hyperplane through x orthogonal
to the first direction, giving x2. Then the minimizer is on the line between x0 and

x2. The method is "not unlike the conjugate gradient method of Hestenes and
Stiefel (1952)."
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/EL/Wilkinson, J.H. (1962) "Instability of the Elimination Method of Reducing
a Matrix to Tri-Diagonal Form," Computer J. 5, pp. 61-70.

Relates the Lanczos (1950) algorithm to Hessenberg’s method (1941 Ph.D. thesis)
applied to a lower Hessenberg matrix, reducing it to tridiagonal form.

72.

73.

74.

75.

76.

77.

/CEL/ Faddeev, D. K. and V. N. Faddeeva (1963) Computational Methods of
Linear Algebra, W. H. Freeman and Co., San Francisco, California.

(Translated by Robert C. Williams from 1960 publication of State Publishing House
for Physico-Mathematical Literature, Moscow.) Discusses in Chapter 4 the
"method of orthogonalization of successive iterations" for finding eigenvalues of
matrices, which, in the symmetric case, is the Lanczos (1950) algorithm. Discusses
in Chapter 6 how to continue the algorithm for symmetric and nonsymmetric ma-
trices in case it terminates in fewer than n steps. Discusses the use of the "A-
minimal iteration algorithm," the "A-biorthogonal algorithm," steepest descent, s-
dimensional steepest descent, and conjugate direction algorithms for solving linear
systems.

/N/ Fletcher, R. and M. J. D. Powell (1963) "A Rapidly Convergent Descent
Method for Minimization," Computer J. 6, pp. 163-168.

Derives the Davidon-Fletcher-Powell (DFP) algorithm for minimizing non-quadratic
functions and accumulating an approximate Hessian matrix. References Hestenes
and Stiefel (1952).

/CL/Fridman, V.M. (1963) "The Method of Minimum Iterations with Minimum
Errors for a System of Linear Algebraic Equations with a Symmetric Matrix,"
USSR Comp. Math. and Math. Phys. 2, pp. 362-363.

Derives a conjugate gradient method (from the Lanczos perspective) which minim-
izes the 2-norm of the error over the subspace Ar(),AZr(),

/C/Ginsburg, Theo (1963)
pp. 191-200.

"The Conjugate Gradient Method, Numer. Math. 5,

(The Handbook Series Linear Algebra conjugate gradient algorithm.)
term recurrence version of the conjugate gradient algorithm.

Uses the 3-

/C/Khabaza, I.M. (1963) "An Iterative Least-Square Method Suitable for Solv-
ing Large Sparse Matrices," Computer J. 6, pp. 202-206.

Proposes the s-dimensional steepest descent algorithm applied to minimization of
the norm of the residual for solving linear systems. Does not recompute the param-
eters in subsequent iterations unless the residual begins to increase. Notes superior-
ity to conjugate gradients and SOR on some test problems.

/ACPS/ Wachspress, Eugene L. (1963) "Extended Application of Alternating
Direction Implicit Iteration Model Problem Theory," J. Soc. Industr. Appl. Math.
11, pp. 994-1016.

Uses ADI applied to the model problem as a preconditioner for conjugate gradients
applied to more general problems. Gives some discussion of convergence rate as a
function of mesh spacing. References Lanczos (1952) rather than Hestenes and
Stiefel. References Engeli et al. (1959) for other examples of "compound itera-
tion."
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78.

79.

80.

81.

82.

83.

84.

85.

/ACP/Dufour, H.M. (1964) "Resolution des Systemes Lineaires par la Methode
des Residus Conjugues," Bulletin G(od(sique 71, pp. 65-87.

Derives the minimum residual and conjugate gradient algorithms and proposes their
use for symmetric positive definite systems, for linear least squares problems, for
least squares subject to equality constraints, and for systems resulting from block el-
imination of a 22 block matrix, leading to a Schur complement of the form
C-B*A-lB as the matrix in the problem. Discusses preconditioning when an ap-
proximate inverse is available. Applies the method to problems in geodesy.

/PS/Ehrlich, Louis W. (1964) "The Block Symmetric Successive Overrelaxation
Method," J. Soc. Industr. Appl. Math. 12, pp. 807-826.

Uses Chebyshev acceleration on block SSOR. Estimates rate of convergence and
gives numerical results.

/N/ Fletcher, R. and C. M. Reeves (1964) "Function Minimization by Conjugate
Gradients," Computer J. 7, pp. 149-154.

Generalizes conjugate gradients to nonquadratic functions by adding line searches
and by taking the current gradient to be the current residual. Quadratic termination
is obtained without evaluating or approximating the Hessian matrix.

/S/Gunn, James E. (1964a) "The Numerical Solution of V.aVu=f by a Semi-
Explicit Alternating-Direction Iterative Technique," Numer. Math. 6, pp. 181-184.

Proposes and analyzes the iteration Mxn +1 =Mxn-Ol(Axn-b) where M is one step of
the Peaceman-Rachford ADI iteration for the discretization of the desired operator
V.aV and the domain is rectangular. Obtains a work estimate of
O (h-2log h- log e-t) to reduce the error by e.

/S/Gunn, James E. (1964b) "The Solution of Elliptic Difference Equations by
Semi-Explicit Iterative Techniques," SlAM J. Numer. Anal. 2(Series B), pp. 24-45.

Proposes and analyzes the iteration Mxn/=Mxn-o3(Axn-b) where M is one step of
the Peaceman-Rachford ADI iteration (variable c0) for the discrete Laplacian opera-
tor (i.e., not the matrix A), the elliptic operator is not necessarily symmetric, and the
domain is rectangular. Uses Chebyshev acceleration and second-order Richardson
and obtains an improved convergence result over Gunn (1964). Applies the algo-
rithm to mildly nonlinear problems.

/CEL/ Householder, Alston S. (1964) The Theory of Matrices in Numerical
Analysis, Blaisdell Publishing Co., New York.

"The Lanczos algorithm is well known in the theory of orthogonal polynomials, but
Lanczos (1950) seems to have been the first to apply it to the reduction of matrices
(p.28, Dover edition)." Develops Lanczos tridiagonalization in matrix form;
discusses Lanczos polynomials.

/EL/ Parlett, Beresford (1964) "The Development and Use of Methods of LR
type," SlAM Rev. 6, pp. 275-295.

Notes that Henrici observed that the first diagonal of the QD scheme can be found
by the Lanczos (1950) algorithm; thus, QD links the power method to Lanczos’
method.

/CN/Powell, M. J.D. (1964) "An Efficient Method for Finding the Minimum of
a Function of Several Variables Without Calculating Derivatives," Computer J. 7,
pp. 155-162.
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86.

87.

Proposes an algorithm which uses n line searches per iteration to generate a new
direction. Shows that, for a quadratic function, the directions are conjugate. Pro-
poses a modification in case the n line search directions become linearly dependent.
Gives numerical examples.

/C/Pyle, L. Duane (1964) "Generalized Inverse Computations Using the Gradient
Projection Method," J. Assoc. Comput. Mach. 11, pp. 422-428.

Notes that a Gram-Schmidt-based algorithm for computing generalized inverses is a
conjugate direction method if the matrix is square.

/N/Shah, B. V., R. J. Buehler, and O. Kempthorne (1964) "Some Algorithms for
Minimizing a Function of Several Variables," J. Soc. Industr. Appl. Math. 12, pp.
74-92.

Introduces Partan, a method with quadratic termination in 2n-1 steps or fewer,
which generates conjugate directions. Includes preconditioning matrix in the formu-
lation.

1965

88.

89.

90.

91.

92.

93.

/CN/Broyden, C.G. (1965) "A Class of Methods for Solving Nonlinear Simul-
taneous Equations," Math. of Comp. 19, pp. 577-593.

Develops a family of algorithms based on satisfying the quasi-Newton condition
and using rank-one or rank-two updates to the approximate derivative matrix at
each iteration. Proposes three update formulas. Proposes either a step-size of one,
or using the norm of the residual in a criterion for termination of the line search.
Gives an Algol program and numerical results on ten test problems.

/AC/Campbell, William J. (1965) "The Wind-Driven Circulation of Ice and Wa-
ter in a Polar Ocean," J. of Geophysical Research 70, pp. 3279-3301.

Solves nonlinear equations with 780 variables using conjugate gradients on a linear
system at each iteration.

/CN/Fletcher, R. (1965) "Function Minimization without Evaluating Derivatives
A Review," Computer J. 8, pp. 33-41.

Reviews conjugate direction methods of a 1962 paper vf .Smith, Powell (1964) and
a 1964 paper of Davies, Swann, and Campey.

/L/ Golub, G. and W. Kahan (1965) "Calculating the Singular Values and
Pseudo-Inverse of a Matrix," SIAM J. Numer. Anal. 2(Series B), pp. 205-224.

Uses Lanczos’ observation that the singular values of a matrix are the eigenvalues
of a matrix of dimension n +m with zeros on the block diagonal and A and A* off
the diagonal. Generates the bidiagonal form from Householder transformations or
from the Lanczos (1950) algorithm.

/CN/Nashed, M.Z. (1965) "On General Iterative Methods for the Solutions of a
Class of Nonlinear Operator Equations," Math. of Comp. 19, pp. 14-24.

Gives a class of iterative methods for operators in Hilbert space and shows that
conjugate gradients and others are first-order approximations to these methods.

/AN/ Paiewonsky, Bernard (1965) "Optimal Control: A Review of Theory and
Practice," AIAA J. 3, pp. 1985-2006.

Surveys control problems and nonlinear optimization methods.
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94.

95.

96.

1966

97.

98.

99.

100.

/CEL/ Vorobyev, Yu V. (1965) Method of Moments in Applied Mathematics,
Gordan and Breach Science Pub., New York.

(Translated from the Russian by B. Seckler.) Discusses the Lanczos algorithm for
generating an orthogonal basis and and a sequence of orthogonal polynomials for
symmetric matrices. Notes its use in finding eigenvalues, and discusses Lyusternik’s
idea of converting a certain infinite series to a continued fraction in order to use
moments to determine the coefficients of the same orthogonal polynomials that
Lanczos used. References L. A. Lyusternik, "Solution of Linear Algebraic Prob-
lems by the Method of Continued Fractions," Transactions of a Seminar on Func-
tional Analysis, No. 2, Voronezh (1956), pp. 85-90. Notes that the "point of depar-
ture" for Lanczos (1950) and (1952) and for Hestenes and Stiefel (1952) and
Lyusternik was "the Chebyshev-Markov classical scalar problem of moments for
the quadratic functional (Ax,x)," and that "the methods of Lanczos and Lyusternik
were subsequently extended to completely continuous self-adjoint operators" by
Karush (1952) and Stecin (1954).

/AN/Wilde, D.J. (1965) "A Review of Optimization Theory," Indust. and Eng.
Chem. 57 no. 8, pp. 19-31.

Mentions conjugate gradients and other methods.

/CEL/ Wilkinson, J.H. (1965) The Algebraic Eigenvalue Problem, Clarendon
Press, Oxford.

Advocates use of Lanczos (1950) algorithm with double precision arithmetic and
complete reorthogonalization. Restarts with different initial vectors if the size of
the new vector deteriorates in the nonsymmetric case.

/EN/Bradbury, W. W. and R. Fletcher (1966) "New Iterative Methods for Solu-
tion of the Eigenproblem," Numer. Math. 9, pp. 259-267.

Uses conjugate gradient and DFP algorithms to solve the generalized symmetric
eigenproblem by minimizing the Rayleigh quotient. Notes that the line searches
can be performed exactly. Renormalizes at each step to keep the infinity norm of
the iterate equal to one. Reports faster convergence with conjugate gradients except
on very ill-conditioned problems, but both methods are slower than QR if many
eigenvalues are desired.

/PS/D’Yakonov, Ye. G. (1966) "The Construction of Iterative Methods Based
on the Use of Spectrally Equivalent Operators," USSR Comp. Math. and Math.
Phys. 6, No. 1, pp. 14-46.

(Zh. vchisl. Mat. mat. Fiz. 6, No. 1, pp. 12-34.) Uses spectrally equivalent opera-
tors in a Richardson iterative algorithm and analyzes convergence.

/CELP/Kaniel, Shmuel (1966) "Estimates for Some Computational Techniques in
Linear Algebra," Math. of Comp. 95, pp. 369-378.

Develops convergence bounds for conjugate gradients in terms of Chebyshev poly-
nomials and the condition number of the matrix. Develops bounds for Lanczos
(1950) method eigenvalues in terms of condition number and separations. Notes
that results extend to Hilbert space. Results corrected in Belford and Kaufman
(1974).

/EL/Lehmann, N.J. (1966) "Zer Verwendung optimaler Eigenwerteingrenzungen
bei der LiSsung symmetrischer Matrizenaufgaben," Numer. Math. 8, pp. 42-55.
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Develops a previous idea of using a set of Rayleigh quotients to estimate eigen-
values to the special case where the test vectors are those from the Lanczos (1950)
recursion and determines inclusion intervals for the largest. Applies the algorithm
to tri (-1,2,-1) for n =30. Gets good estimates for 4 eigenvalues after 8 iterations.

/N/Mitter, S., L. S. Lasdon, and A. D. Waren (1966) "The Method of Conjugate
Gradients for Optimal Control Problems," Proc. IEEE 54, pp. 904-905.

Notes that the Fletcher-Reeves (1964) method also applies in function space.

/AN/ Pitha, J. and R. Norman Jones (1966) "A Comparison of Optimization
Methods for Fitting Curves to Infrared Band Envelopes," Canadian J. of Chemistry
44, pp. 3031-3050.

Concludes that DFP is more effective than a nonlinear conjugate gradient method.

/CEP/Wachspress, Eugene L. (1966) Iterative Solution of Elliptic Systems and
Applications to the Neutron Diffusion Equations of Reactor Physics, Prentice-Hall,
Englewood Cliffs, New Jersey.

In Chapter 5, derives the Lanczos (1950) algorithm and "combined" algorithms
(e.g., Lanczos-Chebyshev) in a way similar to Engeli et al. (1959). Notes that the
algorithms can be applied to a product of two symmetric matrices. Derives the
Chebyshev algorithm for real eigenvalues and for eigenvalues bounded by an ellipse
in the complex plane. Discusses Lanczos’ eigenvalue algorithm with initial filtering
and with a polynomial in A as the operator. In Chapter 6, discusses premultiplica-
tion of the linear system by a matrix, and applying the Lanczos or Chebyshev algo-
rithm to the transformed system. Uses ADI preconditioning as an example. Gives
a rate of convergence estimate for the model problem ADI preconditioned algo-
rithm. In Chapter 9, derives a multigrid algorithm, relating the idea of contracting
the basis to Lanczos projection, and performs numerical experiments indicating im-
provement over the Golub-Varga two-cyclic version of the Chebyshev algorithm
and over SOR.

/AN/ Wilson, Robert (1966) "Computation of Optimal Controls," J. of Math.
Anal. and Applics. 14, pp. 77-82.

Changes a constrained optimization problem to an unconstrained dual problem,
decomposes it into subproblems, and applies conjugate gradients.

/AN/Young, P.C. (1966) "Parameter Estimation and the Method of Conjugate
Gradients," Proc. IEEE 54, pp. 1965-1967.

Uses Mitter, Lasdon, Waren (1966) version of Fletcher-Reeves (1964) algorithm for
real-time process parameter estimation. "Unfortunately, the excellent characteristics
of the conjugate gradients approach.., are not maintained as the level of additive
noise is increased. Considerable data averaging or ’smoothing’ becomes necessary
even for low noise levels, and this tends to destroy the real-time nature of the algo-
rithm."

106. /CN/Broyden, C. G.
Function Minimization,

(1967) "Quasi-Newton Methods and Their Application to
Math. of Comp. 21, pp. 368-381.

Further develops the algorithms in Broyden (1965), focusing on rank-two updates,
function minimization, and linear systems with symmetric matrices.
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/CNP/Daniel, J.W. (1967a) "The Conjugate Gradient Method for Linear and
Nonlinear Operator Equations," SlAM J. Numer. Anal. 4, pp. 10-26.

Presents convergence rates for the conjugate gradient iteration for bounded linear
operators with bounded inverse. Discusses conjugate gradients in full generality,
with preconditioning matrix and inner product matrix. Suggests using Laplacian
operator to precondition second-order linear elliptic partial differential equations.
Nonlinear results corrected in Daniel (1970) and Cohen (1972).

/N/Daniel, James W. (1967b) "Convergence of the Conjugate Gradient Method
with Computationally Convenient Modifications," Numer. Math. 10, pp. 125-131.

Proves convergence and correct asymptotic rate constant for nonlinear conjugate
gradients with inexact line searches. Replaces direction vector parameter by formu-
las which do not involve the second derivative matrix. Nonlinear results corrected
in Daniel (1970) and Cohen (1972).

/C/ Forsythe, George E. (1967) "Today’s Computational Methods of Linear
Algebra," SlAM Rev. 9, pp. 489-515.

Gives conjugate gradients credit to Lanczos (1950) and Hestenes and Stiefel (1952).
Notes that in 1953, the stability of conjugate gradients was much better understood
than that of Gauss elimination.

/N/Lasdon, L. S., S. K. Mitter, and A. D. Waren (1967) "The Conjugate Gradient
Method for Optimal Control Problems," IEEE Trans. on Auto. Control AC-12, pp.
132-138.

Derives a function space version of the nonlinear conjugate gradient method.
Proves convergence if function is bounded below, continuously Frechet differenti-
able, and the second Frechet derivative is bounded.

/AN/ Pitha, J. and R. Norman Jones (1967) "An Evaluation of Mathematical
Functions to Fit Infrared Band Envelopes," Canadian J. of Chemistry 45, pp.
2347-2352.

Solves nonlinear least squares problems by Levenberg-Marquardt with conjugate
gradients.

/AN/Sinnott, Jr., J. F. and D. G. Luenberger (1967) "Solution of Optimal Con-
trol Problems by the Method of Conjugate Gradients," in 1967 Joint Automatic
Control Conference, Preprints of Papers, Lewis Winner, New York, pp. 566-574.

Develops the conjugate gradient algorithm for minimization subject to linear equali-
ty constraints and applies it to control problems, obtaining superlinear convergence.

/CN/ Zangwill, Willard I. (1967) "Minimizing a Function Without Calculating
Derivatives," Computer J. 10, pp. 293-296.

Modifies the algorithm of Powell (1964) to handle the case where the directions fail
to be linearly independent and proves convergence for strictly convex functions.
Proposes an alternate method.

/PS/Dupont, Todd (1968) "A Factorization Procedure for the Solution of Elliptic
Difference Equations," SlAM J. Numer. Anal. 5, pp. 753-782.

Extends the Dupont, Kendall, and Rachford (1968) results to different boundary
conditions and mildly nonlinear problems, obtaining a work estimate of
0 (h-a-l/ZlogU l) for d-dimensional problems to reduce the error by e.
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115.

116.

117.

118.

119.

120.

121.

122.

/PS/Dupont, Todd, Richard P. Kendall, and H. H. Rachford, Jr. (1968) "An Ap-
proximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference
Equations," SlAM J. Numer. Anal. 5, pp. 559-573.

Analyzes the iteration Mxn /=Mxn-co(Axn-b) when A is a finite difference approxi-
mation to an elliptic operator, and the domain is rectangular. Uses the splitting ma-
trix M =LLT, where L +L T has the same sparsity structure as A and the coefficients
are chosen based on the differential operator. Gives a work estimate of
0 (h-5/21oge-1) in two dimensions to reduce the error by e, using a Chebyshev se-
quence of ’s or O (h-31og e-1 for certain fixed co’s.

/AEL/ Eu, B.E. (1968) "Method of Moments in Collision Theory," J. Chem.
Phys. 48, pp. 5611-5622.

Uses Lanczos algorithm to compute eigensystem of model of two-body collisions.

/PS/Evans, D.J. (1968) "The Use of Pre-conditioning in Iterative Methods for
Solving Linear Equations with Symmetric Positive Definite Matrices," J. Inst.
Maths. Applics. 4, pp. 295-314.

(Note: The date "1967" on the first page of the article is a misprint.) Considers
first-order methods (Gauss-Seidel, etc.) and second-order methods (Richardson,
etc.). "Any attempt to improve these basic fundamental methods must clearly apply
some form of pre-conditioning to the original equations, in order to minimize the
P-condition number and hence increase the rate of convergence." Considers
preconditioner M=(I-oL)(I-toL T) and applies it to the model problem with ones
on the diagonal. Uses Chebyshev acceleration.

/C/ Forsythe, George E. (1968) "On the Asymptotic Directions of the s-
Dimensional Optimum Gradient Method," Numer. Math. 11, pp. 57-76.

Studies the directions from which the iterates approach their limit for the s-
dimensional steepest descent algorithm, equivalent to conjugate gradients restarted
every s iterations. Shows that either termination occurs in one restart cycle, or con-
vergence is no faster than linear.

/ACP/Fox, R. L. and E. L. Stanton (1968) "Developments in Structural Analysis
by Direct Energy Minimization," AIAA J. 6, pp. 1036-1042.

Preconditions the stiffness matrix by the diagonal. Reports that conjugate gradients
and DFP are then effective.

/N/Horwitz, Lawrence B. and Philip E. Sarachik (1968) "Davidon’s Method in
Hilbert Space," SlAM J. Appl. Math. 16, pp. 676-695.

Uses the same techniques that were applied to the Hestenes-Stiefel (1952) and
Fletcher-Reeves (1964) algorithms to generalize algorithm to Hilbert space.

/AN/ Klimpel, Richard and Emmet Phillips (1968) "Extrapolation of Thermal
Functions to 0K Using Unconstrained Nonlinear Optimization," J. of Chemical
and Engineering Data 13, pp. 97-101.

Uses DFP.

/N/Kratochvil, Alexander (1968) "La M6thode des Gradients Conjugents pour les
Equations Non Lin6aires das L’Espace de Banach," Commentationes Mathematicae
Universitatis Carolinae 9, pp. 659-676.

Studies convergence of the conjugate gradient method for monotone nonlinear
operators between a reflexive Banach space and its dual.
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/N/ Lynch, R. T. and K. A. Fegley (1968) "The Davidon Method for Optimal
Control Problems," Proc. IEEE 56, pp. 1253-1254.

Extends DFP method to finite dimensional function space.

/P/ Marchuk, G. I. and Ju. A. Kuznecov (1968) "On Optimal Iteration
Processes," Soviet Math. Dokl. 9, No. 4, pp. 1041-1045.

(Dokl. Akad. Nauk SSSR 181, No. 6, 1968.) Studies the convergence of an iterative
method with polynomial preconditioning, and shows it equivalent to the s-
dimensional steepest descent algorithm for certain choices of the coefficients.
Discusses the s step conjugate gradient algorithm with preconditioning.

/CN/ Myers, Geraldine E. (1968) "Properties of the Conjugate-Gradient and
Davidon Methods," J. of Optimization Theory and Applications 2, pp. 209-219.

Shows that the algorithms produce directions that are scalar multiples of each other
and, under perfect line searches, identical iterates.

/AN/Nagy, George (1968a) "Classification Algorithms in Pattern Recognition,"
IEEE Trans. on Audio and Electroacoustics AU-16, pp. 203-212.

Notes that conjugate gradients can be used in classification according to the
Anderson-Bahadur criterion (see Nagy (1968b)).

/AN/ Nagy, George (1968b) "State of the Art in Pattern Recognition," Proc.
IEEE 56, pp. 836-862.

Discusses the use of conjugate gradients in optimizing using the "minimax decision
rule" of Anderson and Bahadur, which equalizes the probability of type and type
2 classification errors.

/N/Pagurek, B. and C. M. Woodside (1968) "The Conjugate Gradient Method for
Optimal Control Problems with Bounded Variables," Automatica 4, pp. 337-349.

Modifies the Fletcher-Reeves (1964) and Lasdon (second derivative) methods to
truncate the step in the presence of constraints.

/PS/Stone, Herbert L. (1968) "Iterative Solution of Implicit Approximations of
Multidimensional Partial Differential Equations," SIAM J. Numer. Anal. 5, pp.
530-558.

Proposes the iteration Mxn /l =Mxn-co(Axn-b), where A is a finite difference approxi-
mation to an elliptic operator, and the domain is rectangular. Uses the precondi-
tioning matrix M =LLT where L +L T has the same sparsity structure as A and the
coefficients are chosen based on the differential operator. Proposes cycling from
top to bottom and bottom to top on alternate iterations for the application of the
preconditioner.

/AN/ Wallach, Yehuda (1968) "Gradient Methods for Load-Flow Problems,"
IEEE Trans. on Power Apparatus and Systems PAS-87, pp. 1314-1318.

Formulates load flow problem as an optimization problem and applies steepest des-
cent and conjugate gradients.

/L/Yamamoto, Tetsuro (1968) "On Lanczos’ Algorithm for Tri-Diagonalization,"
J. Sci. Hiroshima Univ. Ser A-I 32, pp. 259-284.

Extends the results of Causey and Gregory (1961) on continuing the Lanczos
biorthogonal reduction algorithm to the case in which both vectors, not just one,
vanish. Gives a geometric interpretation.
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1969

132. /AN/ Bierson, B.L. (1969) "A Discrete-Variable Approximation to Optimal
Flight Paths," Astronautica Acta 14, pp. 157-169.

Uses Fletcher-Reeves (1964) to solve a sequence of unconstrained problems.

133. /AN/Birta, Louis G. and Peter J. Trushel (1969) "A Comparative Study of Four
Implementations of a Dynamic Optimization Scheme," Simulation 13, No. 2, pp.
89-97.

Concludes that DFP is faster than Fletcher and Reeves (1964) conjugate gradients
on a set of optimal control problems.

134. /CN/Cantrel|, Joel W. (1969) "Relation between the Memory Gradient Method
and the Fletcher-Reeves Method," J. of Optimization Theory and Applications 4,
pp. 67-71.

Notes that memory gradient and Fletcher-Reeves are the same on quadratic func-
tions.

135. /EN/Fox, R. L. and M. P. Kapoor (1969) "A Minimization Method for the Solu-
tion of the Eigenproblem Arising in Structural Dynamics," in Proceedings of the
Second Conference on Matrix Methods in Structural Mechanics, ed. L. Berke, R.
M. Bader, W. J. Mykytow, J. S. Przemieniecki, M. H. Shirk, Wright-Patterson Air
Force Base, Ohio AFFDL-TR-68-150, pp. 271-306.

Finds several small eigenvalues of a generalized eigenproblem by using the
Bradbury-Fletcher (1966) idea of minimizing the Raleigh quotient using the conju-
gate gradient algorithm, and the idea of orthogonalizing against the eigenvectors
previously determined. Gives numerical examples.

136. /AC/Fried, Isaac (1969) "More on Gradient Iterative Methods in Finite-Element
Analysis," AIAA J. 7, pp. 565-567.

Uses conjugate gradients to construct the explicit inverse of a finite-element matrix,
and discusses storage management on tape units, keeping the original matrix
unassembled. Discusses modifications to the matrix in case it is rank deficient.

137. /AEL/Garibotti, C. R. and M. Villani (1969) ’"Continuation in the Coupling Con-
stant for the Total K and T Matrices," ll Nuovo Cimento 59, pp. 107-123.

Uses the Lanczos (1950) algorithm for finding the eigensystem of a problem in non-
relativistic scattering theory.

138. /CP/Godunov, S. K. and G. P. Prokopov (1969) "Solution of the Laplace Differ-
ence Equation," USSR Comp. Math. and Math. Phys. 9, No. 2, pp. 285-292.

(Zh. vchisl. Mat. mat. Fiz. 9, No. 2, pp. 462-468.) For the model problem, obtains
an algorithm with number of iterations independent of mesh size by combining ADI
with a Rayleigh-Ritz criteria for the parameters.

139. /CN/Goldfarb, Donald (1969) "Extension of Davidon’s Variable Metric Method
to Maximization under Linear Inequality and Equality Constraints," SIAM J. Appl.
Math. 17, pp. 739-764.

Proposes a stable gradient projection approach updating the full Hessian approxima-
tion.
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/N/Hestenes, Magnus R. (1969) "Multiplier and Gradient Methods," J. of Op-
timization Theory and Applications 4, pp. 303-320.

Discusses conjugate direction and conjugate gradients in terms of the Rayleigh-Ritz
method on Hilbert space with applications to minimizing a function subject to non-
linear constraints by the augmented Lagrangian method.

/N/Kawamura, K. and R. A. Volz (1969) "On the Convergence of the Conjugate
Gradient Method in Hilbert Space," IEEE Trans. on Auto. Control AC-14, pp.
296-297.

Extends conjugate gradients to Hilbert spaces using uniform continuity of the gra-
dient instead of bounded second Frechet derivatives as do Mitter, Lasdon, and
Waren (1966).

/AC/Luenberger, David G. (1969) "Hyperbolic Pairs in the Method of Conjugate
Gradients," SIAM J. Appl. Math. 17, pp. 1263-1267.

Applies conjugate gradients to the indefinite matrix system corresponding to minim-
izing a quadratic subject to linear equality constraints. Derives a double step algo-
rithm to overcome breakdown when the direction vector satisfies (p,Ap)=O.

/AL/Marshall, Jr., Thomas G. (1969) "Synthesis of RLC Ladder Networks by
Matrix Tridiagonalization," IEEE Trans. Circuit Theory CT-16, pp. 39-46.

Reduces cyclic matrices to tridiagonal form by an algorithm which has the Lanczos
method as a special case.

/CN/Mehra, Raman K. (1969) "Computation of the Inverse Hessian Matrix Us-
ing Conjugate Gradient Methods," Proc. IEEE 57, pp. 225-226.

Constructs the Hessian inverse from the search directions.

/N/ Miele, A., H. Y. Huang, and J. C. Heideman (1969) "Sequential Gradient-
Restoration Algorithm for the Minimization of Constrained Functions Ordinary
and Conjugate Gradient Versions," J. of Optimization Theory and Applications 4,
pp. 213-243.

Gives an extension of the conjugate gradient algorithm to minimization of nonlinear
functions subject to nonlinear equality constraints by alternating conjugate gradient
steps on the augmented Lagrangian function with steps back to the constraints.

/ACN/Pearson, J.D. (1969) "Variable Metric Methods of Minimisation," Com-
puter J. 12, pp. 171-178.

Concludes that conjugate gradients is generally better than DFP for well-conditioned
problems and worse for ill-conditioned.

/N/Polak, E. and G. Ribiere (1969) "Note sur la Convergence de Methodes de
Directions Conjugees," Revue Francaise d’Informatique et de Recherche Opera-
tionnelle 3, pp. 35-43.

Modifies the update to the direction vector in the Fletcher-Reeves (1964) algorithm.

/CN/Polyak, B.T. (1969) "The Conjugate Gradient Method in Extremal Prob-
lems," USSR Comp. Math. and Math. Phys. 9, No. 4, pp. 94-112.

(Zh. vchisl. Mat. mat. Fiz. 9, No. 4, pp. 807-821.) Proves convergence of a conju-
gate gradient method for nonquadratic functions and for quadratic functions with
upper and lower bounds on the variables. Advocates saving the direction vectors
and using them for a change of basis.
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/AEL/Sebe, T. and J. Nachamkin (1969) "Variational Buildup of Nuclear Shell
Model Bases," Annals of Physics 5 l, pp. 100-123.

Uses the Lanczos algorithm with very few steps to find eigenvalues corresponding
to low lying states belonging to nuclear spins in a shell model.

/CN/ Sorenson, H.W. (1969) "Comparison of Some Conjugate Direction Pro-
cedures for Function Minimization," J. of the Franklin Institute 288, pp. 421-441.

Shows that DFP, conjugate gradients, and Partan are identical on quadratic func-
tions. Derives other properties. Proposes a new definition for the parameter:
Agrg/Agrp.

/AN/Westcott, J.H. (1969) "Numerical Computational Methods of Optimisation
in Control," Automatica 5, pp. 831-843.

Gives survey of methods, including conjugate gradients.

152.

153.

154.

155.

156.

157.

158.

/CN/ Broyden, C.G. (1970) "The Convergence of a Class of Double-rank
Minimization Algorithms 1. General Considerations," J. Inst. Maths. Applics. 6, pp.
76-90.

Analyzes error vectors xk-x* in the Broyden (1967) family of Quasi-Newton algo-
rithms when applied to the minimization of a quadratic function. Uses the observa-
tions to gain insight into the algorithms’ behavior on non-quadratic functions.

/AL/ Chang, F. Y. and Omar Wing (1970) "Multilayer RC Distributed Net-
works," IEEE Trans. on Circuit Theory CT-17, pp. 32-40.

Uses Lanczos algorithm to generate a tridiagonal matrix with positive entries, relat-
ed to the physical parameters in the required network.

/CN/ Daniel, James W. (1970a) The Approximate Minimization of Functionals,
Prentice-Hall, Englewood Cliffs, New Jersey.

Discusses the conjugate gradient algorithm in Hilbert space, including conjugate
directions on quadratics, conjugate gradients on quadratics, and general conjugate
gradients.

/CN/Daniel, James W. (1970b) "A Correction Concerning the Convergence Rate
for the Conjugate Gradient Method," SIAM J. Numer. Anal. 7, pp. 277-280.

Gives correction to Daniel (1967) result for nonlinear equations.

/AC/ De, S. and A. C. Davies (1970) "Convergence of Adaptive Equaliser for
Data Transmission," Electronics Letters 6, pp. 858-861.

Proposes conjugate gradients for solving a least squares problem.

/AL/Emilia, David A. and Gunnar Bodvarsson (1970) "More on the Direct In-
terpretation of Magnetic Anomalies," Earth and Planetary Science Letters 8, pp.
320-321.

Relates the convergence theory for their 1969 algorithm to that of the Lanczos
minimized iterations algorithm.

/AC/George, J. Alan (1970) The Use of Direct Methods for the Solution of the
Discrete Poisson Equation on Non-Rectangular Regions, STAN-CS-70-159, Com-
puter Science Department, Stanford University, Stanford, California.
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Suggests solving the Poisson equation on domains that are unions or differences of
rectangles by taking advantage of fast solvers for rectangular regions. Suggests us-
ing a capacitance matrix method of Hockney or applying the Sherman-Morrison-
Woodbury formula, recognizing that the desired equation involves a matrix which is
a low rank modification of one that can be handled by fast solvers. Proposes solv-
ing the resulting systems by direct methods or iterative methods. Proposes SOR or
conjugate gradients for the capacitance matrix algorithm, since the matrix may not
be explicitly available. Proposes a termination criterion for the iterative methods.
Presents numerical experiments using the SOR algorithm.

/EL/ Godunov, S. K. and G. P. Prokopov (1970) "A Method of Minimal Itera-
tions for Evaluating the Eigenvalues of an Elliptic Operator," USSR Comp. Math.
and Math. Phys. 10, No. 5, pp. 141-154.

(Zh. vchisl. Mat. mat. Fiz. 10, No. 5, pp. 1180-1190.) Uses the Lanczos (1950) al-
gorithm to reduce the matrix of a difference operator to tridiagonal form, and com-
putes the frequencies of a piezo-electric resonator. Recomputes the eigenvalues for
increasing number of Lanczos steps until there is little change. Notes that taking
more than n steps causes extra copies of the eigenvalues to appear and converge.

/CN/Huang, H.Y. (1970) "Unified Approach to Quadratically Convergent Algo-
rithms for Function Minimization," J. of Optimization Theory and Applications 5,
pp. 405-423.

Derives a class of algorithms with one-dimensional line searches, quadratic termina-
tion, function and gradient evaluations only, and using only that information avail-
able at current and previous step. Notes that variable metric algorithms and conju-
gate gradient algorithms are special cases.

/ACP/Kamoshida, Mototaka, Kenji Kani, Kozo Sato, and Takashi Okada (1970)
"Heat Transfer Analysis of Beam-Lead Transistor Chip," IEEE Trans. on Electron.
Devices ED- 17, pp. 863-870.

Uses conjugate gradients with scaling to make the diagonal of the matrix equal to 1.

/N/Kelley, H. J. and J. L. Speyer (1970) "Accelerated Gradient Projection," in
Symposium on Optimization, ed. A. V. Balakrishnan, M. Contensori, B. F.
de Veubeke, P. Kree, J. L. Lions and N. N. Moiseev, Lecture Notes in Mathematics
132, Springer, New York, pp. 151-158.

Develops the DFP algorithm for nonlinear constraints.

/AC/Kobayashi, Hisashi (1970) "Iterative Synthesis Methods for a Seismic Array
Processor," IEEE Trans. on Geoscience Electronics GE-8, pp. 169-178.

Uses a few steps of the conjugate gradient algorithm with projection to minimize a

quadratic function subject to a constraint.

/ACP/Luenberger, David G. (1970) "The Conjugate Residual Method for Con-
strained Minimization Problems," SIAM J. Numer. Anal. 7, pp. 390-398.

Constructs a method with residuals A-conjugate and directions A Z-conjugate and ap-
plies it to quadratic minimization with linear equality constraints.

/N/ Miele, A. and J. W. Cantrell (1970) "Memory Gradient Method for the
Minimization of Functions," in Symposium on Optimization, ed. A. V. Balakrish-
nan, M. Contensori, B. F. de Veubeke, P. Kree, J. L. Lions and N. N. Moiseev,
Lecture Notes in Mathematics 132, Springer, New York, pp. 252-263.
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Develops a method for nonquadratic functions which takes steps of the form
-cg+pod, minimizing at each step over a and 3. Reduces to the conjugate gra-
dient method in the case of quadratic functions.

/ACE/Ojalvo, I. U. and M. Newman (1970) "Vibration Modes of Large Struc-
tures by an Automatic Matrix-Reduction Method," AIAA J. 8, pp. 1234-1239.

Solves the generalized eigenvalue problem with the Lanczos algorithm using a
small number of steps (credited to Crandall (1956)) and the Causey-Gregory (196 !)
stabilization method.

/N/Ortega, James M. and Werner C. Rheinboldt (1970) "Local and Global Con-
vergence of Generalized Linear Iterations," in Studies in Numerical Analysis 2: Nu-
merical Solutions of Nonlinear Problems, ed. J. M. Ortega and W. C. Rheinboldt,
SIAM, Philadelphia.

Gives convergence results for conjugate gradients under conditions such as that the
function is twice continuously differentiable and smallest eigenvalue of the Hessian
is bounded below by a number greater than zero on all of R n.
/EL/Paige, C.C. (1970) "Practical Use of the Symmetric Lanczos Process with
Re-Orthogonalization," BIT 10, pp. 183-195.

Gives rounding error analysis and stopping criterion for finding several extreme
eigenvalues and corresponding eigenvectors using complete re-orthogonalization.
Notes that eigenestimates may be accurate despite loss of orthogonality.

/AEL/ Peters, G. and J. H. Wilkinson (1970) "Ax=XBx and the Generalized
Eigenproblem," SlAM J. Numer. Anal. 7, pp. 479-492.

Applies Lanczos algorithm with complete reorthogonalization to L-1AL-r where
B=LLr. Discusses Golub’s idea for complete reorthogonalization without saving
the vectors.

/N/Powell, M. J.D. (1970) "A Survey of Numerical Methods for Unconstrained
Optimization," SIAM Rev. 12, pp. 79-97.

Surveys nonlinear conjugate gradients and conjugate direction methods, including
s-step gradient, Zoutendijk’s (1960) method, Fletcher-Reeves (1964), Powell, and
DFP.

/AN/Smith, Otto J. M (1970) "Power System State Estimation," IEEE Trans. on

Power Apparatus and Systems PAS-89, pp. 375-380.

Uses DFP in solving a least squares problem related to power distribution.

/AN/ Straeter, Terry A. and John E. Hogge (1970) "A Comparison of Gradient
Dependent Techniques for the Minimization of an Unconstrained Function of
Several Variables," AIAA J. 8, pp. 2226-2229.

Compares DFP and Fletcher-Reeves (1964) algorithm to other methods on problems
related to optimal control.

/N/ Tripathi, S. S. and K. S. Narendra (1970) "Optimization Using Conjugate
Gradient Methods," IEEE Trans. on Auto. Control AC-15, pp. 268-269.

Uses DFP on optimal control problems. Contrasts with Lynch and Fegley (1968) in
that the method is applied to the original problem, not a discretized version.
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1971

174.

175.

176.

177.

178.

179.

180.

181.

182.

/ACN/Fong, T. S. and R. A. Birgenheier (1971) "Method of Conjugate Gradients
for Antenna Pattern Synthesis," Radio Science 6, pp. 1123-1130.

Uses conjugate gradients to minimize an error function with Frechet derivative.

/AENP/Geradin, M. (1971) "The Computational Efficiency of a New Minimiza-
tion Algorithm for Eigenvalue Analysis," J. of Sound and Vibration 19, pp. 319-
331.

Uses diagonal scaling and the local Hessian in the computation of conjugate gra-
dient parameters for minimizing the Rayleigh quotient for eigenvalues of a plate
problem.

/AN/Goldberg, Saul and Allen Durling (1971) "A Computational Algorithm for
the Identification of Nonlinear Systems," J. of the Franklin Institute 291, pp. 427-
447.

Solves a nonlinear control problem using conjugate gradients.

/N/ Kelley, H. J. and G. E. Myers (1971) "Conjugate Direction Methods for
Parameter Optimization," Astronautica Acta 16, pp. 45-51.

Compares five methods and finds conjugate gradients better than Davidon.

/AN/Kobayashi, Hisashi (1971) "Simultaneous Adaptive Estimation and Decision
Algorithm for Carrier Modulated Data Transmission Systems," IEEE Trans. on
Commun. Tech. COM-19, pp. 268-280.

Proposes solving maximum likelihood problems by conjugate gradients.

/C/Maistrovskii, G.D. (1971) "Convergence of the Method of Conjugate Gra-
dients," USSR Comp. Math. and Math. Phys. 11 No. 5, pp. 244-248.

(Zh. vchisl. Mat. mat. Fiz. 11, No. 5, pp. 1291-1294.) Proves that the Fletcher-
Reeves (1964) algorithm converges for any uniformly convex function with bound-
ed level sets and Lipschitz continuous gradient, using exact line searches.

/EL/ Paige, C.C. (1971) The Computation of Eigenvalues and Eigenvectors of
Very Large Sparse Matrices, Ph.D. dissertation, University of London.

Gives rounding error analysis of Lanczos (1950) method (and Hessenberg methods
in general). Corrects and expands Kaniel (1966) convergence theory. Compares
various implementations.

/AL/ Phillips, James L. (1971) "The Triangular Decomposition of Hankel Ma-
trices," Math. of Comp. 25, pp. 599-602.

Observes that a Hankel matrix is a moment matrix: Hij=(Bi-lv,BJ-lv) for some
matrix B and vector v. Applies the Lanczos (1950) algorithm to B and obtains a
Cholesky factorization of H as a byproduct of O (n 2) operations.

/CN/ Powell, M. J.D. (1971) "Recent Advances in Unconstrained Optimiza-
tion," Math. Programming 1, pp. 26-57.

Surveys conjugate gradients and Quasi-Newton research (among other things) from
1967 to 1971.
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/C/Reid, J.K. (1971) "On the Method of Conjugate Gradients for the Solution
of Large Sparse Systems of Linear Equations," in Large Sparse Sets of Linear
Equations, Academic Press, New York, pp. 231-254.

Emphasizes the use of conjugate gradients as an iterative algorithm for large,
sparse, well-conditioned problems, using much fewer than n iterations. Discusses
various computational forms of the algorithm and compares storage requirements,
operations counts, and stability. Recommends recursive residuals with ct=rTr/p’rAp
and 3=rrr/rrr. Also uses minimum residual algorithm.

/EL/ Takahasi, Hidetosi and Makoto Natori (1971-72) "Eigenvalue Problem of
Large Sparse Matrices," Rep. Compt. Centre, Univ. Tokyo 4, pp. 129-148.

Performs a stability analysis for the Lanczos (1950) algorithm without reorthogonal-
ization, and proposes stopping the iteration when the inner product of the Lanczos
iterate with the initial vector grows too large in order to prevent round-eft errors in
the estimated eigenvalues. Gives numerical experiments illustratine t,,: effects of
the stopping criterion.

/EL/Weaver, Jr., William and David M. Yoshida (1971) "The Eigen,,ue Prob-
lem for Banded Matrices," Computers and Structures 1, pp. 651-664.

Uses Lanczos (1950) algorithm with n iterations and full reorthogonalization to
solve the generalized banded eigenvalue problem Ax=)Bx where B is symmetric
and positive definite and A is symmetric. Solves linear systems involving B and
uses QR on the tridiagonal matrix.

/PS/ Widlund, Olof B. (1971) "On the Effects of Scaling of the Peaceman-
Rachford Method," Math. of Comp. 25, pp. 33-41.

Analyzes and discusses the choice of D in the iteration
(t,oD Z+H)Xn +l/Z=(o3D z-V)xn+b, (o)D Z+V)xn +I=(toD Z-H)xn +I/z+b, and suggests the
use of D=diag (H) or D=diag (V).

/AN/Willoughby, J. K. and B. L. Pierson (1971) "A Constraint-Space Conjugate
Gradient Method for Function Minimization and Optimal Control Problems," Int. J.
Control 14, pp. 1121-1135.

Applies conjugate gradients to the Lagrangian function, using line search to guaran-
tee satisfaction of equality constraints.

1972

188.

189.

/ACPS/Axelsson, O. (1972) "A Generalized SSOR Method," BIT 12, pp. 443-
467.

Solves a nonseparable elliptic partial differential equation by conjugate gradients
preconditioned with a scaled SSOR operator based on a mesh varying with the
smoothness of the coefficients. Shows that the number of iterations is dependent on
h-1/ when h is defined by h2) being the smallest eigenvalue of D-A as the mesh-
size goes to zero. Presents numerical experiments.

/CN/Beale, E. M.L. (1972) "A Derivation of Conjugate Gradients," in Numeri-
cal Methods for Non-linear Optimization, ed. F. A. Lootsma, Academic Press, New
York, pp. 39-43.

Gives an elementary derivation of the algorithm, including the case where the initial
direction is not the gradient.
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190. /CN/Broyden, C. G. and M. P. Johnson (1972) "A Class of Rank-1 Optimization
Algorithms," in Numerical Methods for Non-linear Optimization, ed. F. A. Loots-
ma, Academic Press, New York, pp. 35-38.

191.

192.

Derives an update formula based on minimizing a norm of the difference between
the inverse Jacobian and the approximation matrix.

/CN/Cohen, Arthur I. (1972) "Rate of Convergence of Several Conjugate Gra-
dient Algorithms," SIAM J. Numer. Anal. 9, pp. 248-259.

Proves an n-step quadratic convergence rate for the Polak-Ribiere (1969), Daniel
(1967), and Fletcher-Reeves (1964) algorithms when they are reinitialized periodi-
cally. Corrects errors in the work of Daniel and of Polyak (1969).

/N/ Crowder, Harlan and Philip Wolfe (1972) "Linear Convergence of the Conju-
gate Gradient Method," IBM J. of Res. and Devel. 16, pp. 431-433.

Shows that conjugate gradients with initial direction vector not equal to the residual
converges only linearly, and that conjugate gradients with no restarts on a nonlinear
function converges no worse than linearly.

193. /AEL/ Dahlquist, Germund, Stanley C. Eisenstat, and Gene H. Golub (1972)
"Bounds for the Error of Linear Systems of Equations Using the Theory of Mo-
ments," J. of Math. Anal. and Applics. 37, pp. 151-166.

Uses the Lanczos algorithm to derive quadrature rules by finding roots of a set of
orthogonal polynomials, and uses these for obtaining error bounds for linear sys-
tems.

194. /CN/Dennis, Jr., J.E. (1972) "On Some Methods Based on Broyden’s Secant
Approximation to the Hessian," in Numerical Methods for Non-linear Optimization,
ed. F. A. Lootsma, Academic Press, New York, pp. 19-34.

Surveys some rank-one and rank-two update algorithms and a class of methods for
least squares problems and some convergence results.

195. /C/Devooght, J. (1972)
13, pp. 1259-1268.

"The Reproducing Kernel Method II," J. Math. Phys.

Derives a connection between the conjugate gradient algorithm and the reproducing
kernel method.

196. /CN/ Dixon, L. C.W. (1972) "Quasi-Newton Algorithms Generate Identical
Points," Math. Programming 2, pp. 383-387.

Notes that all algorithms in the Broyden (1967) family of algorithms generate the
same sequence of points on general differentiable functions if the line searches, are
exact.

197. /AEN/Fried, I. (1972) "Optimal Gradient Minimization Scheme for Finite Ele-
ment Eigenproblems," J. of Sound and Vibration 20, pp. 333-342.

Computes the smallest eigenvalue of a generalized eigenvalue problem by applying
conjugate gradient to minimize the Rayleigh quotient. Determines the 13 parameter
by seeking the direction which will result in the lowest function value, much as in
the memory gradient method. Uses projection to get the higher eigenvalues. Esti-
mates the error in the eigenvalue estimates and presents numerical experiments.
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/AEL/Golub, G. H., R. Underwood, and J. H. Wilkinson (1972) The Lanczos Al-
gorithm for the Symmetric Ax=XBx Problem, STAN-CS-72-270, Stanford University
Computer Science Department Report, Stanford, California.

Assumes B positive definite, and iterates using a Cholesky factorization of it. Gives
an Algolw program.

/L/Gragg, W.B. (1972) "The Pad6 Table and Its Relation to Certain Algorithms
of Numerical Analysis," SIAM Rev. 14, pp. 1-62.

Gives the relation between the Lanczos polynomials and the Pade Table.

/EL/Haydock, R., Volker Heine, and M. J. Kelley (1972) "Electronic Structure
Based on the Local Atomic Environment for Tight-Binding Bands," J. Phys. C:
Solid State Physics 5, pp. 2845-2858.

Independently discovers the Lanczos (1950) algorithm for symmetric matrices and
names it the "recursion method." Does not normalize the vectors.

/C/Kammerer, W. J. and M. Z. Nashed (1972a) "Iterative Methods for Best Ap-
proximate Solutions of Linear Integral Equations of the First and Second Kinds," J.
of Math. Anal. and Applies. 40, pp. 547-573.

Proves that conjugate gradients converges to a least squares solution, and under cer-
tain conditions, to the one of minimal norm.

/C/ Kammerer, W. J. and M. Z. Nashed (1972b) "On the Convergence of the
Conjugate Gradient Method for Singular Linear Operator Equations," SlAM J. Nu-
mer. Anal. 9, pp. 165-181.

Proves that conjugate gradients, applied to minimizing the norm of the residual’of
an equation involving a bounded linear operator between two Hilbert spaces with
closed range converges to a least squares solution. Gives bounds on rate of conver-
gence in both cases. Also studies the case of nonclosed range.

/N/ Klessig, R. and E. Polak (1972) "Efficient Implementations of the Polak-
Ribiere Conjugate Gradient Algorithm," SIAM J. Control 10, pp. 524-549.

Presents two modifications to the conjugate gradient algorithm to ensure conver-
gence without line searches.

/AN/Leondes, C. T. and C. A. Wu (1972) "The Conjugate Gradient Method and
Its Application to Aerospace Vehicle Guidance and Control. Part I: Basic Results in
the Conjugate Gradient Method. Part II: Mars Entry Guidance and Control," As-
tronautica Acta 17, pp. 871-890.

Calculates optimal trajectory for simulated problem of braking into Mars atmo-
sphere.

/CN/ McCormick, Garth P. and Klaus Ritter (1972) "Methods of Conjugate
Directions vs. Quasi-Newton Methods," Math. Programming 3, pp. 101-116.

Recommends the one-step superlinear Quasi-Newton algorithms over the n or n-1-
step superlinear conjugate direction methods.

/EL/Paige, C.C. (1972) "Computational Variants of the Lanczos Method for the
Eigenproblem," J. Inst. Maths. Applies. 10, pp. 373-381.

Gives round-off error analysis and computational experience with various
mathematically equivalent formulations.
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/N/ Pierson, B.L. (1972) "A Modified Conjugate Gradient Method for Optimiza-
tion Problems," Int. J. Control 16, pp. 1193-1196.

Shows experimentally that restarting a nonlinear conjugate gradient procedure is as

good as the Mehra (1969) idea of taking a Newton step every n iterations, based on
the accumulation of the Hessian by the conjugate gradient directions.

/CN/ Powell, M. J.D. (1972) "Some Properties of the Variable Metric Algo-
rithm," in Numerical Methods for Non-linear Optimization, ed. F. A. Lootsma,
Academic Press, New York, pp. 1-17.

Proves convergence of the DFP algorithm in case that a level set is bounded and
the function is convex (not uniformly convex).

/AC/Reid, J.K. (1972) "The Use of Conjugate Gradients for Systems of Linear
Equations Possessing ’Property A’," SIAM J. Numer. Anal. 9, pp. 325-332.

Iterates on half of the variables to save work.

/AC/Ruhe, Axel and TorbjSrn Wiberg (1972) "The Method of Conjugate Gra-
dients Used in Inverse Iteration," BIT 12, pp. 543-554.

Shows that Golub’s idea for solving the inverse iteration equation by conjugate gra-
dients often gives convergence in a small number of steps.

/ACN/Takahashi, Tomowaki (1972) "An Experimental Analysis of Optimization
Algorithms Using a Model Function," Optik 35, pp. 101-115.

Recommends against conjugate gradients for nonlinear problems.

/AEL/Whitehead, R.R. (1972) "A Numerical Approach to Nuclear Shell-Model
Calculations," Nuclear Physics A182, pp. 290-300.

Uses the Lanczos (1950) algorithm to compute approximate eigenstates.

/PS/Young, David M. (1972) "Second-Degree Iterative Methods for the Solution
of Large Linear Systems," J. Approx. Theory 5, pp. 137-148.

Notes that second-order Richardson is an acceleration of Jacobi. "However, it does
not seem to be generally recognized that second degree methods can be effectively
applied to other methods as well." Estimates rates of convergence for acceleration
of SSOR, improving the Habetler and Wachspress (1961) method of estimating o3.

/AN/Bloemer, William L. and Buddy L. Bruner (1973) "Optimization of Varia-
tional Trial Functions," J. Chem. Phys. 58, pp. 3735-3744.

Uses DFP algorithm for computations in atomic and molecular theory.

/S/Bracha-Barak, Amnon and Paul E. Saylor (1973) "A Symmetric Factorization
Procedure for the Solution of Elliptic Boundary Value Problems," SIAM J. Numer.
Anal. 10, pp. 190-206.

Studies an algorithm proposed by Stone (private communication, 1969) which,
although not second order (see Saylor (1974)), is designed to force maximal cancel-
lation when the error matrix is applied to a discretization of a first-degree polynomi-
al.

/PS/Concus, Paul and Gene H. Golub (1973) "Use of Fast Direct Methods for
the Efficient Numerical Solution of Nonseparable Elliptic Equations," SlAM J. Nu-
mer. Anal. 10, pp. 1103-1120.
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217.

218.

219.

220.

221.

222.

223.

224.

Uses a preconditioned Chebyshev iteration, with fast direct solution of Helmholtz’s
equation on a rectangle, to solve linear and self-adjoint elliptic partial differential
equations. Obtains convergence estimates independent of mesh size for scaled
equations that are smooth. Proposes fast direct solution of general separable opera-
tors as a preconditioner.

/CPS/Evans, D.J. (1973) "The Analysis and Application of Sparse Matrix Algo-
rithms in the Finite Element Method," in The Mathematics of Finite Elements and
Applications, ed. J. R. Whiteman, Academic Press, New York, pp. 427-447.

Surveys direct methods, SOR variants, preconditioned Richardson and Chebyshev
methods, gradient methods, and preconditioned conjugate gradient. Gives results
for a model biharmonic problem using conjugate gradients with SSOR precondition-
ing and various relaxation parameters.

/AEL/Golub, G.H. (1973) "Some Uses of the Lanczos Algorithm in Numerical
Linear Algebra," in Topics in Numerical Analysis, ed. John J. H. Miller, Academic
Press, New York, pp. 173-184.

Gives clear derivation of the Lanczos (1950) algorithm for the symmetric eigen-
value problem and for the solution of linear systems. Gives error bounds on the
eigenvalues and on the errors in the linear system after fewer than n steps.

/C/Kielbasifiski, A., Grazyna Wo2niakowska, and H. Woiniakowski (1973) "A1-
gorytmizacja metod najlepszej strategii dla wielkich uklad6w r6wnali o
symetrycznej, dodatnio okreglonej macierzy," Roczniki Polskiego Towarzystwa Ma-
tematycznego: Matematyka Stosowana Seria 3,1, pp. 47-68.

"Algorithmization of the Best Strategy Methods for Large Linear Systems with a
Positive Definite Matrix" presents an Algol code for a method which combines the
Chebyshev and minimal residual iterations (see Engeli et al. (1959), Chapter 2).

/CN/ Luenberger, David G. (1973) Introduction to Linear and Nonlinear Pro-
gramming, Addison-Wesley, Menlo Park, California.

Gives derivation of the conjugate gradient method from the viewpoint of conjugate
directions and optimal polynomials. Develops the partial conjugate gradient algo-
rithm (see also Forsythe (1968)), the expanding subspace property, and convergence
bounds, and extends the algorithm to nonquadratic problems. Summarizes
Luenberger’s research in the field.

/AN/Polak, E. (1973) "An Historical Survey of Computational Methods in Op-
timal Control," SIAM Rev. 15, pp. 553-584.

Surveys gradient and other methods.

/ACN/ Powers, W.F. (1973) "A Crude-Search Davidon-Type Technique with
Applications to Shuttle Optimization," J. Spacecraft 10, pp. 710-715.

Uses DFP with crude line searches.

/CP/Stewart, G.W. (1973) "Conjugate Direction Methods for Solving Systems
of Linear Equations," Numer. Math. 21, pp. 285-297.

Develops bi-conjugate direction methods, using one set of basis vectors for the
search directions and another to define a subspace orthogonal to the residual. Re-
lates the algorithms to matrix factorizations. Develops the block generalization of
this class of algorithms.

/AC/ Wang, R. J. and S. Treitel (1973) "The Determination of Digital Wiener
Filters by Means of Gradient Methods," Geophysics 38, pp. 310-326.

Analyzes seismic data by least squares and conjugate gradients.
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1974

225. /ACP/Axelsson, O. (1974a) On Preconditioning and Convergence Acceleration
in Sparse Matrix Problems, CERN Technical Report 74-10, Data Handling Divi-
sion, Geneva.

Proposes conjugate gradients or Chebyshev iteration preconditioned by SSOR (or
block-SSOR) for solving discretizations of elliptic partial differential equations.
Proves that, for the model problem, the condition number is reduced by the power
1/2. Gives numerical results for the model problem.

226. /ACP/ Axelsson, O. (1974b) "On the Efficiency of a Class of A-Stable
Methods," BIT 14, pp. 279-287.

Uses the term "preconditioning." Solves a particular linear system by precondi-
tioning conjugate gradients or Chebyshev with a related linear operator, giving con-
dition number independent of mesh.

227. /ACNP/Bartels, Richard and James W. Daniel (1974) "A Conjugate Gradient Ap-
proach to Nonlinear Elliptic Boundary Value Problems in Irregular Regions," in

Conference on the Numerical Solution of Differential Equations, Dundee, 1973, ed.
G. A. Watson, Springer Verlag, New York.

Develops the idea in Daniel’s 1965 thesis of solving discretizations of linear or non-
linear self-adjoint elliptic partial differential equations by conjugate gradients,
preconditioned by the Laplacian operator. Uses a fast Poisson solver at each itera-
tion. Shows that the convergence rate is independent of mesh size. Provides nu-
merical results.

228. /CEL/Belford, Geneva G. and E. H. Kaufman, Jr. (1974) "An Application of
Approximation Theory to an Error Estimate in Linear Algebra," Math. of Comp.
28, pp. 711-712.

Corrects a result of Kaniel (1966) on the convergence of the conjugate gradient and
Lanczos algorithms by noting that the standard Chebyshev theorem does not apply
although a result of Kaufman and Belford (J. Approx. Theory 7 (1973), pp. 21-35)
gives the desired conclusion.

229. /CN/ Bertsekas, Dimitri P. (1974) "Partial Conjugate Gradient Methods for a
Class of Optimal Control Problems," IEEE Trans. on Auto. Control AC-19, pp.
209-217.

Uses conjugate gradients preconditioned by the inverse of a part of the Hessian
evaluated at the initial point. Restarts the iteration every s<n steps.

230. /S/Bracha-Barak, Amnon (1974) "A Factorization Procedure for the Solution of
Multidimensional Elliptic Partial Differential Equations," SlAM J. Numer. Anal. 11,
pp. 887-893.

Generalizes the Stone symmetric splitting of Bracha-Barak and Saylor (1973) to
more than two space dimensions and studies convergence properties.

231. ]EL/Cullum, Jane and W. E. Donath (1974a) A Block Generalization of the Sym-
metric S-Step Lanczos Algorithm, IBM T. J. Watson Research Center Report RC
4845, Yorktown Heights, New York.

Develops the block Lanczos algorithm with selected reorthogonalization. Presents
numerical results.
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/EL/Cullum, Jane and W. E. Donath (1974b) "A Block Lanczos Algorithm for
Computing the q Algebraically Largest Eigenvalues and a Corresponding Eigen-
space for Large, Sparse Symmetric Matrices," in Proc. 1974 IEEE Conference on
Decision and Control, IEEE Press, New York, pp. 505-509.

Presents the block Lanczos algorithm as a generalization of the algorithm of Karush
(1951).

/PS/Evans, D.J. (1974) "Iterative Sparse Matrix Algorithms," in Software for
Numerical Mathematics, ed. D. J. Evans, Academic Press, New York, pp. 49-83.

Surveys the basic iterative methods and discusses the importance of preconditioning
in the stationary iterative methods as well as higher order ones such as Richardson
extrapolation for large sparse, as well as small dense ill-conditioned matrices.
Draws attention to the Lanczos (1950) method as a promising one for computing
eigenvalues.

/AEL/Harms, Edward (1974) "A Modified Method of Moments Approach to the
Solution of Scattering Equations," Nuclear Physics A222, pp. 125-139.

Uses the Lanczos (1950) algorithm for finding eigenvalues relating to scattering
theory.

/AN/ Haschemeyer, Rudy H. and Leonard F. Estis (1974) "Analysis of Self-
Associating Systems from Sedimentation Velocity Data," J. Biological Chem. 249,
pp. 489-491.

Uses DFP.

/AENP/Hasselman, T. K. and Gary C. Hart (1974) "A Minimization Method for
Treating Convergence in Modal Synthesis," AIAA J. 12, pp. 316-323.

Minimizes the Rayleigh quotient using conjugate gradients preconditioned by a di-
agonal matrix. Projects against earlier eigenvectors.

/CN/ Huang, H.Y. (1974) "Method of Dual Matrices for Function Minimiza-
tion," J. of Optimization Theory and Applications 13, pp. 519-537.

Presents a method based on two matrices: one for generating (conjugate) directions
and the other to generate a descent direction. Proves n +1 or fewer step termination
on quadratic functions, and needs no line searches.

/PS/Kincaid, David R. (1974) "On Complex Second-Degree Iterative Methods,"
SIAM J. Numer. Anal. 11, pp. 211-218.

Discusses acceleration of stationary iterative methods when the eigenvalues are con-
tained within an ellipse in the complex plane. Notes that the method does not have
practical advantage for SOR, but does produce a more efficient algorithm using
Gauss-Seide|.

/CN/ McCormick, G. P. and K. Ritter (1974) "Alternate Proofs of the Conver-
gence Properties of the Conjugate-Gradient Method," J. of Optimization Theory and
Applications 13, pp. 497-518.

Proves superlinear convergence of a reset conjugate gradient algorithm, similar to
the Polak-Ribiere algorithm, with approximate line searches, compact level sets, f
twice continuously differentiable in a neighborhood of x*, and f"(x*) positive
definite. Gives a rate of convergence when f" is Lipschitz in a neighborhood of
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/EL/Paige, C.C. (1974) "Bidiagonalization of Matrices and Solution of Linear
Equations," SIAM J. Numer. Anal. 11, pp. 197-209.

Shows that the Golub and Kahan (1965) algorithm is equivalent to the Lanczos
(1950) algorithm applied to a matrix with 0 blocks on the diagonal and A and A/

off the diagonal. Applies the algorithm to solving linear least squares problems and
computing eigenvalues of 2-cyclic matrices.

/ACP! Palmer, John F. (1974) Conjugate Direction Methods and Parallel Com-
puting, Ph.D. dissertation, Stanford University Computer Science Department, Stan-
ford, California.

Develops the block form of the Golub and Kahan (1965) bidiagonalization algo-
rithm. Adds reorthogonalization to Luenberger (1973) partiffl conjugate gradient al-
gorithm. Derives block Lanczos and block conjugate gradient algorithm. Extends
to symmetric indefinite problems using Gauss elimination with partial pivoting
(rather than Paige and Saunders’ LQ factorization). Discusses parallel implementa-
tion on SIMD machines with number of processors much less than n. Solves model
problem using red/black ordering to reduce system to half size, and then applies
conjugate gradients preconditioned by tridiagonal blocks. Presents similar results
for nine-point operator and biharmonic. Presents a modification to the Powell
(1964) nonlinear conjugate direction algorithm based on a QR factorization to

prevent directions from becoming linearly dependent.

/NEL/Ruhe, Axel (1974a) "Iterative Eigenvalue Algorithms for Large Symmetric
Matrices," in Numerische Behandlung von Eigenwertaufgaben Oberwolfach 1972,
ISNM 24, Birkhiuser Verlag, Basel and Stuttgart, pp. 97-115.

Compares Lanczos (1950) algorithm with optimization of the Rayleigh quotient by
steepest descent and conjugate gradient algorithms on problems in which the matrix
is on secondary storage units. Studies the rates of convergence and gives numerical
examples showing that the Lanczos algorithm is superior, although the conjugate
gradient algorithm also works well on well-conditioned problems and is easily im-
plemented.

/AELN/ Ruhe, Axel (1974b) "SOR-Methods for the Eigenvalue Problem with
Large Sparse Matrices," Math. of Comp. 28, pp. 695-710.

Applies SOR to minimization of the Raleigh quotient. Notes that it is as effective as
conjugate gradient minimization if the separation of the eigenvalues is not too bad,
but conjugate gradient minimization or the Lanczos (1950) algorithms are preferred
in case of poor separation.

/AC/Saxena, Narendra K. (1974) "Adjustment Technique without Explicit For-
mation of Normal Equations (Conjugate Gradient Method)," J. of Geophysical
Research 79, pp. 1147-1152.

Applies conjugate gradients to the normal equation formulation of a geodetic tri-
angulation system of size 965573. References his 1972 technical report for a de-
tailed description of programs and testing. Gives good reference list for German
literature.

/S/Saylor, Paul E. (1974) "Second Order Strongly Implicit Symmetric Factoriza-
tion Methods for the Solution of Elliptic Difference Equations," SIAM J. Numer.
Anal. 11, pp. 894-908.

Proposes an alternative to the SIP method of Stone which gives a symmetric (rather
than unsymmetric) splitting of the matrix while preserving the "second-order" pro-
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perty that (discretizations of) all first degree polynomials are in the null space of the
error matrix. Concludes that all such symmetric second-order splittings are imprac-
tical numerically.

/AC/ Sayre, D. (1974) "Least-Squares Phase Refinement. II. High-Resolution
Phasing of a Small Protein," Acta Cryst. A30, pp. 180-184.

Uses conjugate gradients on a parametric least squares problem with only five itera-
tions for each set of parameters but total computational costs of $7500.

/ANP/ Wilson, William J. (1974) "SST Flight Profile Optimisation," Proc.
Inst. of Elect. Engrs. 121, pp. 739-745.

Uses preconditioned conjugate gradients to solve a control problem related to the
Concorde.

/CP/Chandra, R., S. C. Eisenstat, and M. H. Schultz (1975) "Conjugate Gradient
Methods for Partial Differential Equations," in Advances in Computer Methods for
Partial Differential Equations, ed. R. Vichnevetsky, AICA, Rutgers University,
New Brunswick, New Jersey, pp. 60-64.

Applies the conjugate gradient algorithm, preconditioned by the Dupont, Kendall,
Rachford (1968) scheme, to the model problem in two dimensions, and states that
O (nS/nlogE-1) operations are required to reduce the error by e. Gives analogous
results in three dimensions.

/CN/Danilin, Yu. M. (1975) "Dual Direction Methods for Function Minimiza-
tion," in Optimization Techniques." IFIP Technical Conference, ed. G. I. Marchuk,
Springer-Verlag (Lecture Notes in Computer Science 27), New York, pp. 289-293.

Summarizes some previous work in developing algorithms based on biconjugate
vectors. Gives a superlinearly convergent algorithm based on biorthogonal direc-
tions for minimizing functions whose Hessian matrices are uniformly positive
definite with bounded condition number.

/EL/ Davidson, Ernest R. (1975) "The Iterative Calculation of a Few of the
Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Ma-
trices," J. Comp. Phys. 17, pp. 87-94.

Uses Lanczos (1950) to motivate a method, also related to coordinate relaxation,
less expensive than Lanczos per iteration.

/N/Dennemeyer, R. F. and E. H. Mookini (1975) "CGS Algorithms for Uncon-
strained Minimization of Functions," J. of Optimization Theory and Applications
16, pp. 67-85.

Uses conjugate direction algorithms with directions generated by Gram-Schmidt on
a predetermined set of vectors.

/N/Dixon, L. C.W. (1975) "Conjugate Gradient Algorithms: Quadratic Termina-
tion without Linear Searches," J. Inst. Maths. Applics 15, pp. 9-18.

Accepts the first improved point generated by a certain line search procedure rather
than the function minimizer. Stores and updates two extra vectors.

/CN/Gay, David M. (1975) Brown’s Method and Some Generalizations, with Ap-
plications to Minimization Problems, TR 75-225, Ph.D. thesis, Department of
Computer Science, Cornell University, Ithaca, New York.
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Draws the connections among a 1966 method of Brown for solution of nonlinear
equations, Craig’s (1955) method for linear equations, and Stewart’s (1973) gen-
eralized conjugate direction algorithms. Uses these properties to derive new algo-
rithms for constrained and unconstrained minimization.

/AEL/Hausman Jr., R. F., S. D. Bloom, and C. F. Bender (1975) "A New Tech-
nique for Describing the Electronic States of Atoms and Molecules The Vector
Method," Chem. Phys. Letters 32, pp. 483-488.

Uses Lanczos (1950) to determine smallest eigenvalues of large matrices modeling
configuration interaction wavefunctions.

/EL/Haydock, R., V. Heine, and M. J. Kelley (1975) "Electronic Structure Based
on the Local Atomic Environment for Tight-Binding Bands: II," J. Phys. C: Solid
State Physics 8, pp. 2591-2605.

Refine’s their 1972 derivation of the Lanczos algorithm.

/C/ Hestenes, Magnus R. (1975) "Pseudoinverses and Conjugate Gradients,"
Communications of the ACM 18, pp. 40-43.

Notes that conjugate gradients can be used on least squares problems using sym-
metry of A*A or AA*. Gives an algorithm for constructing a pseudoinverse of A
using the standard formulation, but with x, r, and p considered to be matrices, and
with inner product (x,y)=xijY*ij. Notes that the algorithm is O (n 4) for computing
the inverse of a dense nonsingular matrix.

/N/Huang, H. Y. and A. K. Aggarwal (1975) "A Class of Quadratically Conver-
gent Algorithms for Constrained Function Minimization," J. of Optimization Theory
and Applications 16, pp. 447-485.

Derives a family of algorithms which includes the conjugate gradient algorithm and
the variable metric methods. Shows that all the algorithms behave identically for
quadratic minimization subject to linear constraints and terminate in at most n-r
steps when r is the number of linearly independent constraints.

/AEL/Ibarra, R. H., M. Vallieres, and D. H. Feng (1975) "Extended Basis Shell-
Model Study of Two-Neutron Transfer Reactions," Nuclear Physics A241, pp.
386-406.

Discusses the Lanczos method using fewer than n steps to calculate two-nucleon
overlaps.

/CPS/ Marchuk, G.I. (1975) Methods of Numerical Mathematics, Springer-
Verlag, New York.

(Translated by Jiri Ruika from Metody Vychislitel’noi Mathematiki, 1973, Nauka,
Novosibirsk) Gives an exposition of the conjugate gradient method (Sec. 3.2) and
suggests its use in acceleration iterative methods based on matrix splittings.

/CL/Paige, C. C. and M. A. Saunders (1975) "Solution of Sparse Indefinite Sys-
tems of Linear Equations," SlAM J. Numer. Anal. 12, pp. 617-629.

Extends the Lanczos algorithm to nonpositive definite systems by replacing the im-
plicit LU decomposition without pivoting with various stable factorizations. Pro-
duces a generalization of the conjugate gradient (SYMMLQ) and minimum residual
(MINRES) algorithms. Notes that the algorithm can be used for linear least squares
problems. Reports computational experience, and refers to a technical report for
programs.
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/AEL/Platzman, G.W. (1975) "Normal Modes of the Atlantic and Indian Oce-
ans," J. of Physical Oceanography 5, pp. 201-221.

Uses the Lanczos algorithm to find eigenvalues in a small range of the spectrum.

/EP/Ruhe, Axel (1975) "Iterative Eigenvalue Algorithms Based on Convergent
Splittings," J. of Computational Phys. 19, pp. 110-120.

Solves generalized eigenvalue problem by splitting A-B=V-H and iterating
Xs + -W- Hxs.
/C/Stewart, G.W. (1975) "The Convergence of the Method of Conjugate Gra-
dients at Isolated Extreme Points of the Spectrum," Numer. Math. 24, pp. 85-93.

Shows that the error component in the direction of an eigenvector for an extreme
and isolated eigenvalue converges rapidly.

/ACEL/Todd, John (1975) "Numerical Analysis at the National Bureau of Stan-
dards," SIAM Rev. 17, pp. 361-370.

"This scheme was devised in 1951 simultaneously by E. Stiefel in Ziirich and M.
R. Hestenes at INA. There was considerable preliminary work at INA in which
Forsythe, Karush, Motzkin and Rosser also participated. At the same time Lanczos,
also at INA, adapted his (1950) method of minimized iterations for the determina-
tion of the characteristic polynomial of A to one for the solution of Ax =b and ar-
rived at the same conjugate direction method. There was much further work at INA
by [L.] Paige, M. Stein, Hayes, Hochstrasser, L. Wilson and Curtiss. The definitive
report is [Hestenes and Stiefel (1952) and Hestenes (1956)]."

/N/Turner, W. C. and P. M. Ghare (1975) "Use of Dynamic Programming to Ac-
celerate Convergence of Directional Optimization Algorithms," J. of Optimization
Theory and Applications 16, pp. 39-47.

Gives algorithm for determining step lengths for multiple steps at once. Claims ap-
plicability to conjugate gradients but does not apply it.

]EL] Underwood, Richard (1975) An Iterative Block Lanczos Method for the Solu-
tion of Large Sparse Symmetric Eigenproblems, Ph.D. dissertation, Stanford Univer-
sity Computer Science Dept. Report STAN-CS-75-496, Stanford, California.

Develops the block version of the Lanczos algorithm and generalizes Paige’s con-
vergence theory for the eigenvalue and eigenvalue estimates. Suggests strategies for
choosing a blocksize. Gives Fortran implementation with full reorthogonalization.

/C/ Wo2niakowska, G. and H. Wo2niakowski (1975) "Algorytmizacja metody
me-T," Roczniki Polskiego Towarzystwa Matematycznego: Matematyka Stosowana
Seria 3,5, pp. 51-60.

"Algorithmization of the me-T method" Presents an Algol code for a combined
Chebyshev and minimal error iteration applied to the normal equations for a rec-
tangular system.

/C/ Wo2niakowski, H. (1975) "Metoda minimalnych B-bled6w dla wielkich
uklad6w r6wnari liniowych o dowolnej macierzy," Roczniki Polskiego Towarzystwa
Matematycznego: Matematyka Stosowana Seria 3,5, pp. 5-27.

"The Method of Minimal B-Errors for Large Systems of Linear Equations with an
Arbitrary Matrix" develops conjugate gradient methods which minimize the B-norm
of the error, and suggests applying them to normal equations.
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1976

269. /ACP/ Allwright, J. C.

270.

271.

272.

273.

274.

(1976) "Conjugate Gradient Versus Contraction Map-
ping," J. of Optimization Theory and Applications 19, pp. 587-611.

Notes that preconditioned conjugate gradients using a matrix splitting requires fewer
iterations than the stationary iterative method alone._.Appl__ies the conjugate gradient
technique to control problems, using R or R+W QW as preconditioning for
R+W*QW, where is a low rank approximation to W.

/CP/Andersson, Lennart (1976) SSOR Preconditioning of Toeplitz Matrices, Ph.D.
Thesis, Computer Sciences Department, Chalmers University of Technology,
G6teborg.

Analyzes the eigenvalue distribution for SSOR preconditioning of Toeplitz matrices
and for triangular Toeplitz matrix preconditioning. Applies the results to discretized
elliptic differential equations.

/CPS/ Axelsson, O. (1976) "A Class of Iterative Methods for Finite Element
Equations," Computer Methods in Applied Mechanics and Engineering 9, pp. 123-
137.

Discusses the preconditioned conjugate gradient algorithm in three-term recurrence
form using matrix splittings such as ADI and SSOR as preconditioners, and gives
operation counts for solving self-adjoint second-order problems in d dimensions by
SSOR preconditioning of the conjugate gradient algorithm compared with a direct
method and with standard conjugate gradients. Gives convergence bounds for
preconditioned conjugate gradient algorithms when the eigenvalues fall in two dis-

joint intervals and when there are only a few isolated large eigenvalues.

/S/ Beauwens, Robert and Lena Quenon (1976) "Existence Criteria for Partial
Matrix Factorizations in Iterative Methods," SIAM J. Numer. Anal. 13, pp. 615-643.

Presents existence criteria for partial factorizations such as Stone’s method and
Buleev’s method. Extends results to block factorizations and studies convergence
properties of iterations based on the symmetric point factorization methods.

/ACEL/Cline, Alan K., Gene H. Golub, and George W. Platzman (1976) "Calcu-
lation of Normal Modes of Oceans Using a Lanczos Method," in Sparse Matrix
Computations, ed. James R. Bunch and Donald J. Rose, Academic Press, New
York, pp. 409-426.

Determines interior eigenvalues of matrix of dimension 1919 by using inverse itera-
tion, solving the linear systems using the Lanczos decomposition or the Paige and
Saunders (1975) algorithm.

/C/Concus, Paul and Gene H. Golub (1976) "A Generalized Conjugate Gradient
Method for Nonsymmetric Systems of Linear Equations," in Computing Methods in
Applied Sciences and Engineering, ed. R. Glowinski and J. L. Lions, Springer-
Verlag, New York, pp. 56-65.

Develops an iterative method in three-term recurrence form which requires that the
symmetric part of A be positive definite and that linear systems involving it be easy
to solve. Shows that estimates of the eigenvalues of M-A can be obtained in the
course of the iteration, and that the algorithm takes at most k iterations if there are k
distinct eigenvalues. Gives a computational example.
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275. /ACP/Concus, Paul, Gene It. Golub, and Dianne P. O’Leary (1976) "A General-
ized Conjugate Gradient Method for the Numerical Solution of Elliptic Partial Dif-
ferential Equations," in Sparse Matrix Computations, ed. James R. Bunch and
Donald J. Rose, Academic Press, New York, pp. 309-332.

Gives general exposition of preconditioned conjugate gradients. Suggests using
conjugate gradients until approximations to extreme eigenvalues can be determined
and then switching to the Chebyshev semi-iterative method. Discusses block 2-
cyclic, SSOR, and sparse factorization preconditioning. Gives numerical comparis-
on of Chebyshev and conjugate gradients on elliptic difference equations precondi-
tioned by a discrete Laplacian and for T-shaped regions preconditioned by fast
direct methods.

276. /CN/ Dennis, Jr., J.E. (1976) "A Brief Survey of Convergence Results for
Quasi-Newton Methods," in Nonlinear Programming, ed. Richard W. Cottle and
Carlton E. Lemke, American Mathematical Society, Providence, Rhode Island, pp.
185-199.

Surveys quasi-Newton algorithms and convergence results.

277.

278.

/AC/Dodson, E. J., N. W. Isaacs, and J. S. Rollett (1976) "A Method for Fitting
Satisfactory Models to Sets of Atomic Positions in Protein Structure Refinements,"
Acta Cryst. A32, pp. 311-315.

Applies conjugate gradients to a least squares problem.

/ACNP/ Douglas, Jr., Jim and Todd Dupont (1976) "Preconditioned Conjugate
Gradient Iteration Applied to Galerkin Methods for a Mildly-Nonlinear Dirichlet
Problem," in Sparse Matrix Computations, ed. James R. Bunch and Donald J.
Rose, Academic Press, New York, pp. 333-348.

Uses a fast direct method for Poisson’s equation to precondition a conjugate gra-
dient iteration.

279.

280.

/CN/Fletcher, R. (1976) "Conjugate Gradient Methods for Indefinite Systems,"
in Numerical Analysis Dundee 1975, ed. G. A. Watson, Springer Verlag, New
York, pp. 73-89.

Studies symmetric indefinite problems. Discusses the minimum residual algorithm.
Rediscovers Fridman (1963) algorithm and relates it to Paige and Saunders (1975).
Discusses the Luenberger (1969) algorithm and proposes alternate formulas without
fully solving the instability problem. Discusses extensions to nonlinear problems.

/C/II’in, B.P. (1976) "Some Estimates for Conjugate Gradient Methods," USSR
Comp. Math. and Math. Phys. 16, No. 4, pp. 22-30.

(Zh. vchisl. Mat. mat. Fiz. 16, No. 4, pp. 847-855.) Using Lanczos polynomials
instead of Chebyshev polynomials, obtains estimates of the form
(Aen,e,)<(eo,eo)/(2n+l)2 for conjugate gradients, and analogous results for
minimum residual and "minimal discrepancies" algorithms, whenever
I[ A II < 1. Obtains a family of bounds for the error at the kth step by using the
product of the jth degree Lanczos polynomial and the k-jth degree Chebyshev po-
lynomial. Applies the estimates to conjugate gradients preconditioned by ADI.
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286.

287.

288.
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/EL/ Kahan, W. and B. N. Parlett (1976) "How Far Should You Go with the
Lanczos Process? in Sparse Matrix Computations, ed. James R. Bunch and
Donald J. Rose, Academic Press, New York, pp. 131-144.

Develops error bounds for the exact algorithm and computable diagnostics for the
algorithm with inexact arithmetic.

/AEL/Kaplan, Theodore and L. J. Gray (1976) "Elementary Excitations in Ran-
dom Substitutional Alloys," Physical Review B 14, pp. 3462-3470.

Applies Lanczos (1950) algorithm to find eigenvalues of models of disordered sys-
tems.

/AC/Konnert, John H. (1976) "A Restrained-Parameter Structure-Factor Least-
Squares Refinement Procedure for Large Asymmetric Units," Acta Cryst. A32, pp.
614-617.

Applies conjugate gradients to a least squares problem in which some matrix
coefficients are threshholded to zero.

/N/Lenard, Melanie L. (1976) "Convergence Conditions for Restarted Conjugate
Gradient Methods with Inaccurate Line Searches," Math. Programming 10, pp. 32-
51.

Proves convergence of restarted conjugate gradients with inexact line searches when
the second derivative matrix is continuous, bounded, and Lipschitz at the solution.
Obtains n-step quadratic convergence for some conjugate gradient methods with
inexact line search.

/L/ Paige, C.C. (1976) "Error Analysis of the Lanczos Algorithm for Tridi-
agonalizing a Symmetric Matrix," J. Inst. Maths. Applics. 18, pp. 341-349.

Gives a rounding-error analysis and relates loss of orthogonality to convergence.

/CN/Powell, M. J.D. (1976a) "Some Convergence Properties of the Conjugate
Gradient Method," Math. Programming 11, pp. 42-49.

Proves that conjugate gradients on a quadratic objective function with arbitrary
downhill initial direction is either finitely terminating or linearly convergent.

/CN/Powell, M. J.D. (1976b) "Some Global Convergence Properties of a Vari-
able Metric Algorithm for Minimization without Exact Line Searches," in Non-
linear Programming, ed. Richard W. Cottle and Carlton E. Lemke, American
Mathematical Society, Providence, Rhode Island, pp. 53-72.

Studies the convergence of the BFGS algorithm without exact line searches. Shows
convergence for convex functions and superlinear convergence if the second deriva-
tivematrix is positive definite at the solution under some conditions on the search.

/AC/Proskurowski, WIodzimierz and Olof Widlund (1976) "On the Numerical
Solution of Helmholtz’s Equation by the Capacitance Matrix Method," Math. of
Comp. 30, pp. 433-468.

Uses the SYMMLQ algorithm of Paige and Saunders (1975) as an iterative method
on a dense well-conditioned matrix. Attributes the success of a small number of
iterations to a special eigenvalue distribution. Notes that the matrix can be
represented in product form, as in George (1970).
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290.

291.
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/CN/ Safro, V.M. (1976) "The Rate of Convergence of Some Gradient
Methods," USSR Comp. Math. and Math. Phys. 16, No. 2, pp. 212-215.

(Zh. vchisl. Mat. mat. Fiz. 16, No. 2, pp. 496-499.) Obtains convergence estimates
for a Fletcher-Reeves-type conjugate gradient algorithm under assumptions that the
differentiable function to be minimized in Hilbert space is convex or strongly con-
vex.

/AC/Squire, Wm. (1976) "The Solution of Ill-Conditioned Linear Systems Aris-
ing from Fredholm Equations of the First Kind by Steepest Descents and Conjugate
Gradients," lnternat. J. for Numerical Methods in Engineering 10, pp. 607-617.

Gets smooth solutions to a dense system by taking several conjugate gradient steps.

/AL/von Charzewski, C. and R. M. Dreizler (1976) "Constrained Hartree-Fock
and Minimization of the Variance," Z. Physik A 278, pp. 35-40.

Compares the performance of calculations minimizing both the unprojected and the
projected expectation value and variance of the Hamiltonian, both calculations in-
volving the Lanczos (1950) algorithm.
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